
Report of Security Audit of Cryptocat

• Principal Investigators:

• Nathan Wilcox <nathan@LeastAuthority.com>

• Zooko Wilcox-O'Hearn <zooko@LeastAuthority.com>

• Daira Hopwood <daira@LeastAuthority.com>

• Darius Bacon <darius@LeastAuthority.com>

mailto:nathan@LeastAuthority.com
mailto:zooko@LeastAuthority.com
mailto:daira@LeastAuthority.com
mailto:darius@LeastAuthority.com

Contents
Overview 2

Audit Scope 3

Coverage 3

Target Code and Revision 3

Findings 4

Issue A. Disclosure of File Contents Due to Re-use Of Key and IV 4

Issue B. Integrity Key and IV Reuse in File Transfer 6

Mitigation for Issues A and B 7

Remediation for Issues A and B 7

Versioning 7

Generate per-file keys 8

New standard file transfer protocol 8

Issue C. Substitution of File Contents By Hijacking Entry in User Interface 9

Issue D. File Name, Mimetype, and Size Lack Confidentiality 11

Issue E. You Log Out, Attacker Logs in with the same Nickname, Your Friend Thinks
The Attacker is You

12

Issue F. Nicknames Can Be Invisibly Reassigned 14

Issue G. Capture of Sent Messages by Nickname Change 15

Issues Without Known Exploits 17

CTR-mode Overflow 17

Future Work 18

Protocol Analysis, Design, and Implementation 18

Multiparty Chat 18

File Transfer 18

OTR & Cryptographic Libraries 18

JavaScript Cryptography 18

Open Questions & Concerns 18

Recommendations 20

Coding Practices 20

Appendix A: The life cycle of the Cryptocat file transfer 21

Appendix B: Work Log 25

Appendix C: Exploit Code for Issue G 27

Overview
The Least Authority security consultancy performed a security audit of the Cryptocat messaging client, on
behalf of Cryptocat's sponsor Open Technology Fund. Cryptocat provides end-to-end encrypted chat
using a web browser add-on.

https://LeastAuthority.com/
https://crypto.cat/
https://www.opentechfund.org/
https://crypto.cat/

This report gives the results of the audit.

Audit Scope
The audit investigated essential security properties such as the confidentiality and integrity protection of
Cryptocat chat sessions and file transfers. The audit techniques included interactive penetration testing,
code and design analysis, and discussion with developers.

For the purposes of this audit, we assume integrity of the Cryptocat add-on installed by the user.

A well-known outstanding attack is the side channel of timing information emitted by the implementation of
cryptographic algorithms computing on secrets. It is an unsolved problem how to prevent that information
leakage with cryptographic algorithms implemented in JavaScript. This issue is outside the scope of this
audit.

Coverage
Our code audit covered all of the primary Cryptocat implementation in src/core/js, including
cryptocat.js, and everything inside etc/ and workers/. We reviewed third party code under lib/
only when relevant to a particular investigation, which by the end of the audit included all or parts of
bigint.js, crypto-js/, elliptic.js, multiParty.js, otr.js, salsa20.js, and strophe/.

In terms of feature sets, we focused primarily on cryptographic key management, the entropy system, the
newly developed file transfer feature, and relevant aspects of the user interface.

Some notable features which we did not deeply investigate are the multiparty chat protocol, the
implementation of the Socialist Millionaire's Protocol, and whether the Off-The-Record chat
implementation (otr.js) is a compatible implementation of the OTR protocol.

For the multiparty chat protocol, we spent some time comparing the specification and implementation.
However, we shifted focus away from this protocol for several reasons: First, we believe this protocol will
be replaced by one with wider support across academia and industry, such as mpOTR. Second, the
multiparty chat protocol specification would benefit from including or excluding more security features,
such as transcript soundness and consensus. Finally, the specification focuses on the "how" of
implementation and would benefit from more specificity of the "why" of security goals. We discuss our
general recommendations for multiparty chat protocol in the Future Work section.

Appendix B: Work Log describes our investigation process in fine detail.

Target Code and Revision
All file references are based on the v2.1.15 git tag of the Cryptocat codebase, which has revision id:

05ddc47d8c1beff4511199a011859ee046687614

All file references use Unix-style paths relative to the working directory root.

Findings

Issue A. Disclosure of File Contents Due to Re-use Of Key and IV
Reported: 2013-11-06

Synopsis: The file transfer feature re-uses a symmetric encryption key and IV in CTR-mode for multiple
file transfers in a single Diffie-Hellman session.

Impact: An eavesdropper can learn some or all of the contents of the transferred files under some
conditions.

Attack Resources: The attacker requires only passive collection of records of the HTTP traffic (or the
BOSH and XMPP protocol traffic embedded in those HTTP requests).

Feasibility: This attack requires only simple and efficient off-line computation once records of vulnerable
ciphertext traffic are known.

This loss of confidentiality occurs when more than one file is transferred through the file transfer feature
during a single Diffie-Hellman session.

There is no loss of confidentiality when only a single file is transferred.

This traffic is present at the XMPP protocol layer, which is embedded in HTTP (via BOSH). The HTTP
traffic of crypto.cat, by default uses TLS to and from the server.

A compromise is feasible through at least several vectors:

• A server compromise (including malicious insiders) could allow live traffic sniffing to recover these
ciphertexts.

• A server host compromise may grant access to log files containing recorded vulnerable traffic. (In
particular we know that ejabberd logs complete XMPP traffic when the log system is set to verbose.
Being based on Erlang infrastructure, it is feasible to increase log verbosity without any interruption
to the service, assuming appropriate permissions on the server.)

• Browser logs or caches may contain recorded vulnerable ciphertexts.

• Where TLS is deployed (including the production crypto.cat service), an active TLS attack against
TLS-protected servers could be used to leverage this attack.

• Where TLS is not used, this attack is feasible at an unknown number of routers on the Internet.

Verification: We verified this issue by source code inspection, and by reproducing the use of identical
keys for more than one file transfer using debug output from an instrumented copy of Cryptocat. We also
used the debug output to investigate the extent to which key rollover impacts exploitation of the
vulnerability.

Implementation Analysis: AES counter-mode encryption is used to protect the confidentiality of the file
contents. The IV used for encrypting file contents is a fixed constant of 0. For the receiver, see
./src/core/js/etc/fileTransfer.js, line 255, inside Cryptocat.fileHandler. (The sender
and receiver must use the same IV for decryption to succeed. The IV is not transmitted, and instead both
parties rely on this implicitly known value. The sender IV code results in the same values, and we only
refer to the receiver code in this analysis.)

Files are transmitted in chunks of sequential bytes, and each chunk is encrypted separately. The IV
parameter, which begins at 0, is incremented for each chunk, as seen in ./src/core/js/etc/fileTransfer.js,
line 200. The actual IV passed to the encryption library is padded using an OTR convention as seen in
./src/core/js/lib/otr.js, line 298 and related functions, so this chunk index is encoded in the
high 8 bytes. The low 8 bytes are initialized to 0 and the low 4 bytes incremented by the AES
implementation for each block. This means that the same block index within the same chunk index is
encrypted with the same counter value (which is correct behavior for CTR mode).

The secret key used for file transfers is derived during Diffie-Hellman session initialization in
src/core/js/lib/otr.js, line 2163. A new DHSession is initialized whenever there is a "round trip"

of OTR data packets — client A sends a data packet to client B and then B sends a data packet to A (see
otr.js line 2338). This sequence of events is not guaranteed to occur between file transfers, so
DHSession rotation cannot be relied upon to prevent this loss of confidentiality. In particular, the server
could suppress messages after a file transfer that would otherwise cause a key rotation.

Vulnerability Description: Reuse of the same IV with counter-mode stream encryption reveals the XOR
of the plaintext of two or more messages, given only the ciphertexts of those messages, as follows:

The ciphertext generated by counter-mode is an XOR of a span of plaintext with the output of a block
cipher. The block cipher input is the secret key and a block counter:

ciphertext[j] = F(key, counter[j]) ^ plaintext[j]

Here F is the block cipher, and j is the block number. The first counter[0] is derived directly from the
IV and subsequent counter[j+1] values are derived directly from previous counter[j] values.

If the same counter and key values are ever used on different plaintexts over the entire lifetime of the key,
then the XOR of the associated plaintexts can be recovered. Suppose A and B are two blocks of
plaintext, and A' and B' are the associated ciphertexts, then:

A' ^ B'
= (F(key, C) ^ A) ^ (F(key, C) ^ B)
= (F(key, C) ^ F(key, C)) ^ (A ^ B)
= 0 ^ (A ^ B)
= A ^ B

This reduces the security to that of a "running-key cipher", which is easily broken.

https://en.wikipedia.org/wiki/Running%20key%20cipher

Issue B. Integrity Key and IV Reuse in File Transfer
Reported: 2013-11-06

Synopsis: Re-use of the MAC key potentially allows files to be modified during file transfer, without
detection by the receiving client.

Impact: When keys are reused due to the vulnerability described in Issue A, it is possible to "splice"
ciphertext chunks between transfers of files with the same number of chunks, without invalidating the
MAC tag. This gives an active attacker a limited ability to manipulate the contents of files in flight, under
certain conditions.

Attack Resources: This is an active attack requiring modification of HTTP requests (or the BOSH and
XMPP protocol traffic embedded in those HTTP requests).

Feasibility: This loss of integrity occurs when more than one file is transferred through the file transfer
feature during a single Diffie-Hellman session, and the files have the same number of 64511-byte chunks.

A compromise is feasible through several vectors:

• A server compromise (including malicious insiders) could allow modification or live update of the
server code.

• Where TLS is deployed (including the production crypto.cat service), an active TLS attack against
TLS protected servers could be used to leverage this attack.

• Where TLS is not used, this attack is feasible at an unknown number of routers on the Internet.

Verification: We verified this issue by source code inspection. The experiments performed for Issue A
also support the conclusion that MAC keys are reused between file transfers, provided that there has
been no key rollover.

Implementation Analysis: HMAC with SHA-256 is used to protect the integrity of the file contents. Each
chunk of the file is transmitted with a MAC computed on the following fields:

the chunk number (rcvFile[from][sid].ctr)
the total number of chunks (rcvFile[from][sid].total)
the chunk contents

Due to the key reuse vulnerability described in Issue A, it is possible for two files to be sent using the
same MAC key (the encryption and MAC keys are both derived from the extra_symkey created in
Diffie-Hellman session initialization). When this happens, a MAC tag that is valid for a given chunk of one
file, will also be valid for the same chunk of the other file, provided that the total number of chunks is the
same.

This allows chunks to be "spliced" between the files, violating the expected integrity guarantees.

The requirement that the files have the same number of chunks cannot be considered unlikely; for
example, it is common for files to have length <= 64511 bytes, and files that are revisions of the same
document are also likely to be similar in length.

The same comments on DHSession rotation as for Issue A apply to this issue.

Mitigation for Issues A and B
Reported: 2013-11-06

Live Mitigation: We recommend these immediate mitigations to protect existing live users:

• Notify users that file transfer may lose confidentiality and integrity, and that users with a low risk
tolerance should not transfer files using Cryptocat.

• Simultaneously, distribute a new stable release of Cryptocat, with version number 2.1.16, which
disables the file transfer feature (both send and receive), and has no other changes compared to
2.1.15.

We recommend doing these steps right away instead of hurrying to publish an improved file transfer
feature, because:

• It protects users, although admittedly it also inconveniences them.

• It delays publishing details that attackers could use to exploit users. This potentially protects
users more than if we simultaneously inform attackers of how to exploit users of the old version
at the same moment as announcing to users that they should stop relying on the old version.

• Any other mitigation deserves careful analysis before implementation and deployment.

• Future design and mitigation changes may benefit from other findings in this audit. If we
immediately patch one problem, only to later discover another vulnerability with an unexpected
relationship to the patch, that effort may be thwarted.

Remediation for Issues A and B
Reported: 2014-01-26

Design and Implementation Mitigation: We recommend that after the Live Mitigation steps
recommended above, the Cryptocat team perform the following steps:

• Update the file transfer feature to be secure, for a future release of Cryptocat.

• Simultaneously with committing this patch to a publicly-readable source code repository (i.e. github),
publish a document (e.g. blog post) describing the details of the vulnerability and how the fixed
version avoids it.

We are willing to help design a future file transfer protocol, if desired.

Versioning
One valuable feature of a new file transfer protocol would be versioning. Ideally, if one of the two
endpoints is running code with the new file transfer protocol and the other is running code with file transfer
disabled (e.g. version 2.1.18) or with the old file transfer protocol (version ≤ 2.1.15), users will get a
graceful failure —such as the file-transfer option being disabled in the UI along with an explanation that
the other peer is using too old of a version— instead of an ungraceful failure such as silent failure, or an
error message that could frighten or confuse a user.

Similarly, it would protect users of older Cryptocats if their Cryptocat client would not attempt to send files
to a newer Cryptocat, because doing so could expose the contents of their files even if the newer
Cryptocat will not accept the transfer, so the new protocol could be designed to prevent older Cryptocats
from attempting to send to it.

We do not currently have a specific protocol in mind to accomplish such versioning, but would be willing to
help try to design one.

Generate per-file keys
The OTR protocol provides a secure shared symmetric key (called the “extra symmetric key” in the
otr.js source code), but if Cryptocat is going to send multiple files, it can't just use that key, but needs a
unique key or IV for each file.

One way to accomplish that would be to use a Key Derivation Function (KDF). A KDF (e.g. HKDF) can be
used as a function that takes two arguments—secret key and diversifier—and returns a new secret key.

Cryptocat could use the "file identifier" (typically called the "filename" in the source code and protocol) as
the diversifier. So, let current encryption key —the one stored at index 0 in the key object in the files
hashtable in fileTransfer.js— be called the "master encryption key", and let the current MAC key
—the one stored at index 1 in the key object— be called the "master MAC key". Then:

file Enc key = KDF(key=master Enc key, diversifier=file identifier)
file MAC key = KDF(key=master MAC key, diversifier=file identifier)

Then, the rest of the Cryptocat v2.1.15 file transfer protocol could be used as-is, but using the file-specific
Enc and MAC keys instead of the master Enc and MAC keys for encryption and MAC respectively.

For this approach to be secure, the diversifier does not need to be confidential, but does need to be
unique within the scope of a given master key. The file identifiers in the Cryptocat v2.1.15 protocol are
random 128-bit values, so they can be relied on to have this uniqueness property. (The master encryption
key and master MAC key, of course, need to be confidential, just as in the Cryptocat v2.1.15 file transfer
protocol.)

New standard file transfer protocol
A longer term strategy is to promote and adopt a file transfer standard in the wider secure protocol
community. We recognize that the Cryptocat team has already solicited feedback from this community on
the OTR development list, and we hope to advocate for more review and collaboration on this protocol
feature.

https://tools.ietf.org/html/rfc5869

Issue C. Substitution of File Contents By Hijacking Entry in User
Interface
Reported: 2014-01-26

Synopsis: The file transfer feature uses a sender-supplied identifier to index into the receiver's display of
received files.

Impact: The attack targets a file transfer from a "victim sender" to a "victim receiver". An attacker can
replace that file with another file when the victim receiver tries to download it.

Attack Resources: In order to succeed with high probability, this attack requires passive monitoring of
HTTP requests (or the BOSH and XMPP protocol traffic embedded in those HTTP requests), in order to
find the sid of the targeted file transfer. The attacker, acting as another client in the same conversation,
must also send their replacement file to the victim receiver.

Feasibility: Passive monitoring of the XMPP protocol traffic is feasible through several vectors:

• A server compromise (including malicious insiders) could allow live traffic sniffing,

• Where TLS is deployed (including the production crypto.cat service), a TLS attack against TLS
protected servers could be used to leverage this attack,

• Where TLS is not used, this attack is feasible at an unknown number of routers on the Internet.

An attacker can be assumed to know the conversation name, since that is available by the same passive
monitoring. Therefore, they are able to send their replacement file in the same conversation.

The replacement file must be sent after the sid is known, and its transfer must complete before the
targeted file transfer. This is straightfoward if the replacement file is smaller than the targeted one or the
attacker has higher bandwidth than the victim sender. Alternatively, since the sid increments by one for
each unique ID used in a session, it can be guessed in advance of a file transfer, allowing the attacker to
start their transfer before the targeted one.

The attack depends on the victim receiver having a one-to-one chat window to the victim sender open at
the point when the attacker's file transfer completes. If the victim receiver is expecting to receive a file
from a given sender then it is quite likely they will have that buddy's window open.

The victim receiver will also receive a notification that the attacker has sent a file. The attacker can cause
the notification to disappear too quickly to be seen, by logging out the buddy used for the attack just after
the transfer completes.

Verification: We verified this issue by source code inspection and by experimentation. To simulate the
attacker being able to eavesdrop the sid field, the experiments were performed using a modified version
of Cryptocat that forces the sid to zero for every file transfer, by changing the
Strophe.Connection.getUniqueId function.

Implementation Analysis: The sid identifying each file transfer is obtained from
Strophe.Connection.getUniqueId, which starts at a random integer between 0 and 99999
inclusive, and increments by one on each call. (Unique IDs are also used for other purposes that are not
relevant to this issue.) While a file transfer is in progress, the user interface element in the receiver's chat
window with the sender has a file= attribute referencing the transfer's sid. This attribute is used by
Cryptocat.updateFileProgressBar to update the progress bar, and by Cryptocat.addFile to
replace the progress bar with a download link when the transfer is complete. (It is also used by
Cryptocat.fileTransferError to signal an error.)

The attack depends on the following code in Cryptocat.addFile:

$('[file=' + file + ']').replaceWith(fileLink)

which performs a global replace of any currently displayed items having the specified file=sid, with the
HTML of the new download link given by fileLink .

Since this is a global replace (see the documentation for replaceWith in jQuery), it affects all file transfer
elements with the same sid that are curently visible. Suppose that the victim receiver's client is showing
the one-to-one chat window for the victim sender, but Cryptocat.addFile is called for a different file
transfer (in another chat window) from the attacker to the same receiver. Then, the UI element in the chat
window for the victim sender will be incorrectly updated to link to the attacker's file.

Because the HTML of the file download link does not contain the file= attribute, any subsequent
updates of that UI element (including the one that would normally cause it to link to the correct file when
the targeted transfer completes) will be ignored.

For the same reason, the progress bar may also be incorrectly updated, causing it to "bounce" between
the values for the two transfers with the same sid. Similarly, a file transfer error may cause the wrong UI
element to be updated.

Live Mitigation: The Cryptocat developers have already (since 2013-11-29) released a version of
Cryptocat (v2.1.16) with file transmission disabled, so issue is already mitigated.

Remediation: Ensure that sid values are always scoped to a particular buddy (i.e. scoped to a particular
chat window). sid values are chosen by the sender under normal operation but could also be chosen by
the server (if the server were malicious or had been confused or compromised by an attack), and sid
values cannot be assumed to be unique in any scope other than the buddy that ostensibly sent the sid. In
fact, per strophejs issue 35, sid values in the future are all going to start at 0 and increment, and then
restart at 0 if that buddy disconnects from and reconnects to the server.

In particular, the global replaceWith in Cryptocat.addFile can be removed.

https://api.jquery.com/replacewith/
https://github.com/cryptocat/cryptocat/blob/master/CHANGELOG.md#cryptocat-2116
https://github.com/strophe/strophejs/issues/35

Issue D. File Name, Mimetype, and Size Lack Confidentiality
Reported: 2014-01-26

Synopsis: The file transfer protocol relies on the SI File Transfer XMPP protocol extension to transmit file
metadata prior to transfer. These metadata are transmitted outside of OTR and lack its confidentiality
features.

Impact: An eavesdropper may discover filenames, MIME types, and sizes of transferred files. The privacy
impact of this exposure is quite limited:

• Filenames are currently randomly generated for each transfer and not associated with the original
source file.

• MIME types are restricted to images and zipfiles, so attackers only learn which of these two
categories a file is in.

• Sizes are in exact bytes, but the size is revealed in any case by the length of the file ciphertext.

Feasibility: An attacker must have access to the XMPP traffic (or the container protocol traffic: BOSH and
HTTP). This access is possible through several vectors:

• A server compromise (including malicious insiders) could allow live traffic sniffing to recover these
messages.

• A server host compromise may grant access to log files containing recorded messages.

• Browser logs or caches may contain recorded messages.

• Where TLS is deployed (including the production crypto.cat service), an active TLS attack against
TLS protected servers could be used to leverage this attack.

• Where TLS is not used, this attack is feasible at an unknown number of routers on the Internet.

Verification: We verified this issue by using Chrome's developer console to view the IBB messages
transmitted over HTTPS, for example:

<body rid="3814497183" sid="e58708cb6438d43ffe6732dcd3ff855f1d690978"
 xmlns="http://jabber.org/protocol/httpbind">
 <iq id="3075:si-filetransfer" to="cryptocataudit@conference.crypto.cat/daira"
 type="set" xmlns="jabber:client">
 <si id="3074" mime-type="application/zip"
 profile="http://jabber.org/protocol/si/profile/file-transfer"
 xmlns="http://jabber.org/protocol/si">
 <file name="229f1c684a5324e50fd5c03b996f8d87.zip" size="158"
 xmlns="http://jabber.org/protocol/si/profile/file-transfer"/>
 [...]
 </si>
 </iq>
 [...]
</body>

Suggested Remediation: In any newly designed file transfer protocol, ensure that metadata is encrypted.

http://xmpp.org/extensions/xep-0096.html

Issue E. You Log Out, Attacker Logs in with the same Nickname,
Your Friend Thinks The Attacker is You
Reported: 2014-01-26

Synopsis: Cryptocat uses an identification model in which a client that knows the name of a channel is
able to log in to that channel and claim any unused nickname.

Users may believe that an attacker using a given nickname is the same party as the previous user of that
nickname.

This risk is intended to be mitigated by the use of the Socialist Millionaire Protocol (SMP). Within a
pairwise session between two users, it is possible to use the SMP to verify shared knowledge of a
prearranged secret. However, a pair of users who wished to authenticate all of their communications
would need to repeat the SMP on every pairwise session between those users.

(A "pairwise session" in this sense ends when either user logs out. It is not the same as the Diffie-Hellman
sessions involved in Issues A and B.)

This issue could be exacerbated if the attacker observes the session status, for example, an attacker
could watch the status of the (encrypted) conversation between Alice and Bob, then see that Bob has
logged out, then log in and choose the nickname "Bob", then initiate a conversation with Alice and say
“One more thing…”. The timing of the initiation of the new session, and the natural-sounding “One more
thing…” would trigger Alice's social response to a resumed conversation and may make her forget to
question whether this is a different user. This is an example of using social engineering as part of an
attack.

Another way this issue could be exacerbated is if the attacker can force a user to disconnect. If the
attacker controls the Cryptocat server, can Man-In-The-Middle the HTTP(S) connections between the
clients and the server, or can use a Denial-of-Service attack on one of the clients, they can cause a
disconnect. For example, an attacker could observe an (encrypted) conversation in progress, force one
party to disconnect from the Cryptocat server, log in and choose the nickname that party was previously
using, establish a session with the other party, and then say “Sorry. What were you saying?”.

This issue is exacerbated by the wording of login messages. Suppose that Alice performs an SMP
verification with Bob; then Bob logs out and someone claiming the nickname "Bob" logs in. Alice's client
will display this to her as "Bob logged in.", but there is no assurance that this is the same Bob.

Using SMP to gain assurance of the identity of the counterparty is inconvenient. Each run of the protocol
requires 6 mouse clicks and entry of the secret question and answer from the initiating user; the
responding user needs to answer the question and make 2 mouse clicks. The initiating user gets an
indication that the protocol succeeded, but the responding user does not. Therefore, mutual authentication
requires at least 8 mouse clicks in each session from both users, plus one entry of a secret question and
two entries of a secret answer from both users, plus any out-of-band communication and thought needed
to agree on the question and answer. This assumes that the authentication succeeds in both directions
first time, and does not need to be retried.

After the initial dialog in the initiator's client confirming that SMP has succeeded, there is no indication in
the Cryptocat user interface that a successful SMP run has been completed with a given user.

Note that temporary network outages may also cause users to log out and then in again. Under some
conditions, this could be sufficiently frequent to make it impractical to run SMP on each pairwise session.

Verification: Observations of the Cryptocat user interface during experiments in which different clients log
in with the same nickname.

Suggested Mitigations/Remediations:

• Change the login message from "Bob logged in." to "Someone logged in and chose to be called
'Bob'."

• Distinguish nicknames of users that have completed SMP in the current pairwise session.

• Try to reduce the inconvenience of performing SMP. For example, in principle it should be possible
to achieve mutual authentication with a single run of SMP. (A complicating factor is that the initiating
user is able to choose the question, which may give an attacker an advantage.)

• Consider changing the identification model to give clients more persistent keys. This would allow
implementing the option for a user to "pin" a nickname to a given public key. For privacy reasons this
would need to be an explicit user action, and it would need to be possible to delete pinnings.

• Consider assigning random nicknames every time on join. This is done by Google to manage a
similar identification issue — unauthenticated users connecting to a shared resource (anonymous
animals in Google Drive). This might fit in well with Cryptocat's branding; users could be assigned
cute cat names and icons!

• Consider preventing the same nickname from being reused with a different public key for some
timeout period. (This would occasionally cause false positives, e.g. if a user reloads Cryptocat and it
generates a new key pair, they would have to pick a new nickname temporarily.)

We also suggest performing a user study to investigate the assumptions that users have about the current
interface and any intended changes.

http://googlesystem.blogspot.com/2013/04/anonymous-animals-in-google-drive.html
http://googlesystem.blogspot.com/2013/04/anonymous-animals-in-google-drive.html

Issue F. Nicknames Can Be Invisibly Reassigned
Reported: 2014-01-26

Synopsis: A user may see no sign at all of an Issue E attack: in the window for one-to-one chat with a
specific buddy, there is no indication when a buddy has logged out. Therefore, if a user is looking at the
one-to-one chat, there is no way for them to know that the session for which SMP succeeded has ended.
In fact, an attacker may be able to force it to end.

A suspicious and diligent user could discover the reassignment by switching back to the
main-conversation window and scanning the conversational transcript for the relevant notifications of their
buddy parting and joining, potentially buried among chitchat and other events.

There is potentially also an audio notification when any buddy joins or leaves, but this is not specific to a
particular buddy, and may be switched off or otherwise not audible.

This vulnerability could also potentially allow an attacker to get away with performing a Man-In-The-Middle
attack that is interrupted just during an SMP protocol run, in order to allow SMP to succeed.

Verification: Observations of the Cryptocat user interface, confirmed by source code inspection.

Implementation Analysis: In cryptocat.js, buddyNotification() tests for 'main-Conversation'
and shows the change of status only in that case.

Suggested Remediation: Show the status changes as they occur, and also when the user returns to the
main conversation.

Issue G. Capture of Sent Messages by Nickname Change
Reported: 2014-01-26

Synopsis: An attacker is able to break the confidentiality of a one-to-one chat, by diverting the destination
of outgoing chat messages and replacing the key used to encrypt them. The attack involves use of
nickname-change XMPP messages, which are not sent by Cryptocat but are acted on when received.

Impact: After the diversion, the attacker receives and is able to decrypt messages sent by the victim in
the chat. The original recipient(s) do not receive these messages. The sender(s) see no indication that
their sent messages have been diverted; however, they will not receive any further messages or files in
that chat from the original buddy or from the attacker.

For example, suppose Mallory is the attacker and is targetting a one-to-one chat between Alice and Bob.
Mallory first sets up a chat with Alice (this need only last a short time), and then sends a specific
nickname-change message to Alice's client. After that point, Alice's messages sent to Bob will instead go
to Mallory, encrypted using the keys established between Alice and Mallory (and so readable by Mallory).
Alice will receive no further messages in that chat.

The attack can optionally also be performed in the other direction, causing Bob's messages to Alice to
instead be sent to and readable by Mallory. In that case Bob will receive no further messages or files from
Alice in the chat.

This attack cannot be used to gain the contents of files. After this attack, files will not be sent encrypted
under Mallory's key. Instead files will not be sent at all after this attack.

Feasibility: This attack requires only sending the victim (Alice) an XMPP presence message indicating a
nickname change. An XMPP-BOSH server (operating over TLS or not) will typically relay such messages
without modification, and we have verified that the production crypto.cat service does so. Therefore, the
attack can be performed by any client that knows the conversation name.

Verification: This issue was verified by source code analysis and by experimentation. See Appendix C:
Exploit Code for Issue G.

Implementation Analysis: Cryptocat clients do not support changing their nickname once logged in.
However, the XMPP protocol does support this functionality. A "nickname-change message" is a special
case of an XMPP presence message using status code 303, such as:

<presence xmlns="jabber:client" from="ccaudittest@conference.crypto.cat/mallory"
 to="2716478293139059658259042@crypto.cat/854194958139059658455998">
 <status code="303"></status>
 <item nick="bob"></item>
</presence>

The Cryptocat code has a changeNickname function that is intended to respond to such messages,
indicating changes of nickname by other XMPP clients. This function has an exploitable flaw: it does not
verify that the new nickname is not already being used. So if Mallory starts a chat with the victim Alice,
and then changes his nickname in that chat to Bob, then the Alice↔Mallory connection replaces the
Alice↔Bob connection, overwriting its keys. However, due to an implementation detail of the message
handling code explained below, the callbacks for the replaced connection still reference Mallory's
nickname. Therefore, further messages sent by Alice to Bob are actually (conveniently for the attack)
relayed to Mallory.

The reason why the message callbacks still reference Mallory's nickname is that they close over the
original nickname when created, and changeNickname does not affect these closures. For example, the
handler function created by otrIncomingCallback(buddy) at line 130 of cryptocat.js closes
over the buddy argument in its lexical scope, which is always the original nickname; similarly for
otrOutgoingCallback(buddy) at line 142. In the case of the outgoing callback, this helps the attack
by routing messages to Mallory. In the case of the incoming callback, it hinders the attack by preventing
Mallory from sending messages to Alice that would be interpreted as coming from Bob; instead such
messages would be added to the Alice↔Mallory chat, which no longer exists.

The bug of closure over the original nickname has other effects in the UI, leading us to suspect that
changeNickname has never been tested. We have verified that the following procedure is sufficient to
work around these effects to reproduce the attack:

1. Mallory starts a chat with Alice as normal.

2. Mallory shows the "Display Info" window for Alice, or simulates the effects of doing so. This step is
needed to avoid an incidental bug that is triggered when the nickname change occurs before Mallory
has sent any message in the Alice↔Mallory chat. It also has the effect of causing the buddy entry for
Mallory to disappear "cleanly" in Alice's user interface when the nickname change occurs — whereas
if Mallory sent a message, Alice would receive a flashing notification in her buddy entry for Mallory
that would not disappear immediately.

3. Mallory sends a nickname-change message to the server using the code in Appendix C: Exploit
Code for Issue G. The to field of this message is given by his own JID ending in /mallory, the
status code is <status code="303"/>, and the new nickname bob is specified using
<item nick="bob"/>. Note that Mallory appears to be sending a message to himself, but the
to= and from= fields get swapped (we do not know why), and so Alice receives a message with
from= field ending in /mallory as required.

4. Mallory now receives Alice's messages to Bob exactly as though they had been sent to him.

Suggested Remediation: Remove the changeNickname handler.

Issues Without Known Exploits
This section describes issues for which we have not discovered an exploit in the current Cryptocat use.
These issues could become exploitable when other code changes, so they represent some potential
future security risk.

CTR-mode Overflow
The CTR mode implementation in mode-ctr.js fails to carry when the increment of the least-significant
word overflows. This means a re-used counter and confidentiality leak for messages longer than 2^32
blocks, which is 2^36 bytes for AES, with its 16-byte blocks. This is not exploitable in Cryptocat because
message lengths are always shorter than this. (The file transfer chunk size is (2^16 - 1025) bytes.)

Future Work

Protocol Analysis, Design, and Implementation
Cryptocat is pushing the boundaries of usable, secure, and multiparty messaging. By dint of this
innovative niche, it would benefit as much or more from security-aware protocol analysis and design
collaboration as it does from code auditing and penetration testing.

Multiparty Chat
A key area of unresolved issues is the group-chat protocol design and related security features. The
current multiparty chat protocol is an in-house design and would benefit from protocol specification
refinement, design analysis, and potential design changes.

In terms of product engineering, our intuition is that replacing this protocol with a community-developed
standard will lead to better security in less time. This of course depends on such a community-developed
standard emerging.

Unless a community standard emerges very quickly, it is still valuable to improve the security of the
multiparty chat protocol, and we recommend this general roadmap: First, review the existing specification
to empirically determine which security properties it provides, noting ambiguity when present. Second,
rewrite the specification to follow from those properties (in contrast to describing the procedures or data
formats). Third, separate out the procedures and data formats from the abstract protocol and its security
goals. At this point solicit more scrutiny from the community. This work can also contribute to the
development of the community standard alluded to above.

File Transfer
Like the multiparty chat protocol, the file-transfer features of Cryptocat are developed in-house as
integrated extensions to both XMPP and OTR. We suggest that file transfer not be reenabled until a more
secure protocol is available; our suggestions for such a protocol are described in Remediation for Issues
A and B.

OTR & Cryptographic Libraries
This audit did not focus on the OTR implementation, nor the cryptographic libraries used by Cryptocat.
While we examined these dependencies as necessary for our investigations, these would benefit from
focused, targeted audits.

JavaScript Cryptography
There are open unresolved issues with respect to JavaScript-based security applications. These are
probably more relevant for security research rather than security audit work, but sometimes the lines can
be blurry.

Two areas which concern us are delivery and verification of the Cryptocat add-on, and side-channel
analysis.

Open Questions & Concerns

• Conversations with guessable room names can be "burst-in-on". Does the documentation say to use
unguessable room names? (Note that room names are always known to the server.)

• The OTR protocol appears to allow an attacker to force messages to be selectively dropped. It
protects against message reordering, but forcing a message to be dropped will not prevent
subsequent messages from the same buddy from getting though, and will not cause any warning.
Verification: reading the OTR v3 protocol specification, and the
(ctr <= sessKeys.rcv_counter) check in the handleDataMsg function from otr.js.

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html

• We did not check for the possibility of downgrade attacks to OTR v2. (Both OTR v2 and OTR v3 are
enabled by default, and this default is not overridden by Cryptocat.)

• We tried to determine whether an attacker exploiting issue F could also prevent the notification in the
main conversation window, but were not able to establish whether or not that was possible.

• There may be the potential for inconsistent state between the user interface and the global
currentConversation variable if there is an exception in switchConversation.

• “Major new feature: Cryptocat now automatically reconnects to conversations when disconnected,
without troubling the user. Cryptocat will automatically detect accidental disconnections and wait for
the Internet connection to be re-established before reconnecting.” (from CHANGELOG.md) Does
that mean it is now possible for an attacker to edit out parts of a conversation without troubling the
user?

• Question: If the IV parameter passed to the crypto-js library has the wrong type or is not long
enough, undefined propagation could compromise confidentiality. What happens if a non-Array
general object is passed as IV? What happens if a short Array is passed? We suspect this could be a
disastrous, silent security failure. We manually inspected every call site, and performed some live
tests with assertions within Cryptocat proper to gain confidence that the IV is the right type, size, and
has the correct element types and range.

• Concern: There is a type-dependent return from Cryptocat.getBytes() which actually causes
calls to Cryptocat.encodedBytes(1, ...) to throw an exception.

• Concern: Cryptocat.fileKeys[nickname] is used for transfers in both directions. Is this a
problem?

• What happens if Alice begins receiving $FILE from Bob, then initiates a send to Bob?

• .position > .file.size seems off-by-one (if position = .file.size then the file has all
been sent already)

• Why does it use FileReader and readAsDataURL? This should be documented in a comment.
(My guess: the data is in a string of Unicode chars and needs to be converted to a sequence of
bytes, and the Unicode-encoding way of doing it is inefficient on chunks this large.) Why not use
readAsArrayBuffer?

• otr.js ignores the OTR TLV type 8 4-byte type indicator and assumes it is a filename. This might
break compatibility with a future OTR standard.

• Why are only certain types (MIME types) of files allowed? This should be documented, for example
on a web page, wiki, or text file, and the code that enforces that restriction should have a comment
saying where to find the documentation of it. Perhaps in
https://github.com/cryptocat/cryptocat/wiki/OTR-Encrypted-File-Transfer-Specification, or perhaps a
more user-focused manual.

• Cryptocat.fileSize should be named Cryptocat.maximumFileSize.

• The seq parameter in the file-send protocol is maintained in the sender, received by the receiver,
and stored by the receiver in the rcvFile structure, but is not actually used for anything. Remove
all uses of it (since IBB protocol requires a seq parameter to be sent in the data message, but
Cryptocat doesn't use that parameter, just hard-code it to 0).

• strophe.js getUniqueId is documented as resetting to 0 for each connection, but it actually
resets to a random integer from [0,10000). Opened ticket
https://github.com/strophe/strophejs/issues/35. The ticket was closed by the strophe authors by
setting the uniqueId to 0. This affects Issue C. Substitution of File Contents By Hijacking Entry in
User Interface.

• As documented in Appendix B: Work Log, we concluded that BOSH is resistant to CSRF attacks
provided that the sid parameter is unguessable. Much later, we realized that the sid parameter is
not unguessable. Is there anything else protecting BOSH from CSRF attacks?

https://github.com/cryptocat/cryptocat/blob/80f41fdfac5ed503d0837d8fa29f6364a73478be/CHANGELOG.md#cryptocat-2114
https://github.com/cryptocat/cryptocat/wiki/OTR-Encrypted-File-Transfer-Specification
https://github.com/strophe/strophejs/issues/35

Recommendations

Coding Practices

• The Cryptocat implementation guards against XSS attacks by storing potentially attacker-controlled
data, such as nicknames, as strings and escaping them close to the point of use. This in practice
results in escaping logic being scattered in many places over the source, including Mustache
templates as part of the source; if any one of the necessary places is omitted, there may be an XSS
vulnerability. If instead such data were held in an object that is not usable directly as a string, it would
be much easier to ensure consistent and auditable validation and escaping.

(In JavaScript all objects have implicit coercions to string; however, the implicit coercion may yield a
harmless constant, in which case it is not a security risk for it to be invoked accidentally.)

• A common idiom in Javascript code is for a function to behave differently depending on the type of its
arguments. This can make it harder for reviewers to correctly trace control flow (as they might
misinterpret or misremember which of the behaviors of the function will be executed in a certain
case), and can similarly lead developers to call the function incorrectly. Some of Cryptocat's
dependent libraries use this idiom. We would recommend to the authors of those libraries to instead
write separate functions for each separate behavior.

Examples:

• OTR.prototype._sendMsg in otr.js (from the otr.js codebase), which does something
different if its second argument is true.

• OTR.prototype._sendMsg in otr.js also does something different if its msgstate is
CONST.MSGSTATE_PLAINTEXT.

• selectCipherStrategy() in cipher-core.js (from the crypto-js codebase) is scary,
because what it does depends on whether the type of its key argument is string or other.

• Cryptocat itself uses in one place a similar idiom, of returning different types of argument from a
function in different cases. This is in Cryptocat.getBytes(), which returns different types
depending on whether its first argument is 1 or a number greater than 1. As mentioned in Open
Questions & Concerns, Cryptocat.encodedBytes() doesn't take into account the fact that
Cryptocat.getBytes()'s return value is of varying type, so if you invoke
Cryptocat.encodedBytes(1, …), it will throw an exception. We recommend making each
function return the same type of object in all cases.

• The crypto-js codebase makes heavy use of a .extend prototypical inheritance by
copy-then-modify. Additionally it has a very deep abstraction hierarchy for only a few actual ciphers
and modes. These two styles make it extremely cumbersome to audit by source.

• The key structure which has two slots, 0, and 1, should instead be a struct with named slots.
Recommendation: Use named properties rather than fixed Array indices (tuple-style), or if tuple style
has some advantage, define constants for the indices, rather than using magic constants.

Appendix A: The life cycle of the Cryptocat file transfer
Here are our notes describing our understanding of the Cryptocat file transfer protocol, along with the
parts of the rest of the protocols that are necessary to evaluate the security of the file transfer protocol.
This is described in chronological order of one (or more) file transfers.

1. The server tells a client there is a Presence session, with a Nickname.

Note: there is no attempt to enforce constraints on what Nickname gets used, other than that it can't
be currently in use (see Issue E. You Log Out, Attacker Logs in with the same Nickname, Your
Friend Thinks The Attacker is You).

2. Now the server can deliver messages between clients, which OTR uses to do its protocol, resulting
in a Diffie-Hellman shared secret.

Note: if the user does not perform the optional Socialist Millionaire Protocol authentication, then this
is vulnerable to a Man-In-The-Middle attack (see Issue E. You Log Out, Attacker Logs in with the
same Nickname, Your Friend Thinks The Attacker is You).

The resulting OTR keys are stored in an OTR object, which is stored in a hashtable named
otrKeys, indexed by the Nickname.

3. OTR generates a new DH shared secret "on every round trip" (see below for precisely what that
means). After it generates a new DH shared secret, it begins using it to protect all messages that it
sends from that time on.

By "on every round trip" means: after a new DH shared secret is generated, then the next OTR Data
Message sent will contain an advertisement of a new DH public key. After that advertisement is
received by the peer, then the next OTR Data Message that the peer sends will contain an
acknowledgement of his receipt of that new DH public key. Once that acknowledgement is received
by first party, it will begin using the new DH public key which will result in a new DH shared secret.

4. Whenever a client initiates a file send, then all the following things happen (in order and
synchronously) in the Cryptocat client on the file transmitter side:

a. The file transmitter generates a random 128-bit number encoded in hexadecimal, and appends
the file's extension. We'll call this the "file identifier", although in the source code it is usually
called the "filename".

b. The OTR object sends the file identifier (called a "filename" in this protocol), encrypted and
authenticated, through OTR (using the current DH shared secret), and calls back to Cryptocat
to deliver an "extra symmetric key" (which is derived by OTR from the current DH shared
secret).

(See the call to on('file', …) in handlePresence in cryptocat.js.)

c. The file transmitter diversifies the extra symmetric key into an encryption key and a MAC key,
and stores the pair of keys (encryption key and MAC key) in the hashtable named fileKeys
under the index of the nickname of the intended file-receiver and then under the index of the file
identifier: i.e. if the source code used this terminology, the indexing into fileKeys would be
written fileKeys[receiversNick][fileIdentifier].

N.B. The same OTR-generated key can be used for multiple file transfers here (see Issue A.
Disclosure of File Contents Due to Re-use Of Key and IV and Issue B. Integrity Key and IV
Reuse in File Transfer).

d. The file transmitter then generates an sid, which is guaranteed to be unique within the scope
of that Cryptocat client's current connection to the XMPP server.

N.B. If the client disconnects and reconnects to the XMPP server, then subsequently generated
sids could collide.

e. The file transmitter stores the filehandle (giving access to the file on the local filesystem), the
nickname of the receiver, the encryption and authentication keys, and a counter in a hashtable

named files in fileTransfer.js, indexed by the sid. (See
Cryptocat.beginSendFile in fileTransfer.js.)

f. The file transmitter initiates a strophe file transfer, which sends the sid and the file identifier
(called a "filename" in this protocol) over an unencrypted and unauthenticated protocol. (This
message is unencrypted and unauthenticated at this layer, not at the underlying client↔server
transport layer; i.e. the server is going to see and have the opportunity to manipulate those
values, and unless both clients use TLS to the server, then other parties will as well.) In the
same message, the file transmitter client also includes a file size and MIME type.

(See Cryptocat.beginSendFile in fileTransfer.js and send in
strophe.si-filetransfer.js.)

g. The file transmitter then deletes fileKeys[receiversNick][fileIdentifier].

5. Now the following events might eventually occur in the intended file-receiver, as caused by some of
the network sends in step 4 ("Whenever a file transfer is initiated"), above.

a. Whenever the encrypted and authenticated file identifier is received over the OTR protocol in
the receiver, the OTR object calls back to the Cryptocat code to deliver the file identifier and the
extra symmetric key. The Cryptocat code in the file receiver diversifies the extra symmetric key
into an encryption key and a MAC key, and stores the pair of keys (encryption key and MAC
key) in the hashtable named fileKeys under the index of the nickname of the file sender and
then under the index of the file identifier: i.e. fileKeys[sendersNick][fileIdentifier].

b. Whenever the unencrypted and unauthenticated strophe file-transfer message is received in the
file receiver, the message comes with a from field containing the nickname of the sender, as
supplied by the server. The file receiver takes these five fields: from, sid, file identifier (called
"filename" in the protocol and in the source), size, and mime-type, and stores them in a
hashtable named rcvFile in fileTransfer.js. They are indexed in rcvFile first by
from and then by sid. The strophe implementation sends back an acknowledgement message
(a "noop" in the strophe protocol) to indicate to the sender that the IBB (In-Band-Bytestream)
protocol is supported.

a. N.B. The file transmitter can choose to send anything it likes for sid, file identifier, size, and
mime type. The file transmitter could choose an sid that matches an sid used by a
different peer of the file receiver client, or that matches an sid used by the file receiver
client, if it chose. (The sid could be learned by other peers or by the server, or could
even be guessed "blind" if necessary since they have only approximately 10,000 possible
values and are generated by Math.random.) The file transmitter could not choose a file
identifier that matches a file identifier used by a different peer of the file receiver client (file
identifiers are too large to be guessed and are generated with cryptographic-quality
randomness). The file transmitter could choose a file identifier that matches a file identifier
used by itself previously or concurrently. The file transmitter could choose a file identifier
used by the file receiver client in a previous or concurrent file-send operation in the
opposite direction — from the client currently operating as file receiver, if it previously or
concurrently sent a file.

b. N.B. The server can choose anything that the file transmitter could choose (from 5.b.a.
above). (There is no end-to-end encryption or authentication to prevent the server from
seeing and altering these values as it likes.) In addition, the server can send the from
field set to whatever it likes (there is not, at this point, any cryptographic authentication
showing that the controller of a certain nick sent these fields). In addition, the server knows
the exact sid used by each client and could send a sid chosen to match any of them.
In addition, the server knows the file identifiers used by all clients (since the file identifiers
are sent unencrypted in the strophe protocol, in addition to being sent encrypted in the
OTR protocol), so it could choose to send a file identifier equal to any of them.

6. Now the following event might eventually occur in the file transmitter, as caused by the network send
from the receiver's strophe implementation in 5.b:

a. Whenever the strophe acknowledgement message from the file receiver arrives (indicating that
the receiver is capable of IBB), then the file transmitter sends an IBB 'open' message, which
contains the receiver's nickname, the sid, and the chunksize. This message is transmitted
unencrypted and unauthenticated.

a. N.B. the file transmitter can choose anything it likes to send for the sid and the chunksize.

b. N.B. the server can choose anything that the file transmitter could choose (from 6.a.a
above). In addition, the server can send the "from" field set to whatever it likes. As
mentioned above, the server also knows the sids of all clients.

(See Cryptocat.beginSendFile in fileTransfer.js.)

7. Now the following event might eventually occur in the file receiver, as caused by the network send
from the file transmitter's 6.a.:

a. Whenever an IBB 'open' message is received, the client uses the from and sid values from
the message to retrieve the file identifier from the rcvFile hashtable, i.e.
fileIdentifier = rcvFile[from][sid].filename, and then fetches the keys from the
fileKeys hashtable, i.e. key = fileKeys[from][fileIdentifier], and then stores the
keys in the rcvFile hashtable, i.e. rcvFile[from][sid].key = key, and then deletes
the key from the fileKeys hashtable, i.e. delete fileKeys[from][fileIdentifier].

The file receiver client then sends an IBB "result" message back to the file transmitter.

(See case 'open' in Cryptocat.ibbHandler in fileTransfer.js and open in
strophe.ibb.js.)

8. Now the following event might eventually occur in the file transmitter, as caused by the network send
from the file receiver's 7.a., or as caused by the network send from the file receiver's 9.a.:

a. Whenever an IBB "result" message is received in reply to the IBB "open" message, the
file-transmitter client executes Cryptocat.sendFileData (from fileTransfer.js) with
its to argument set to the intended receiver's nick, and its sid argument set to the sid. (See
Cryptocat.beginSendFile in fileTransfer.js.)

b. Whenever the file transmitter's sendFileData method is invoked, the file transmitter looks
up the file-being-sent's position, filehandle, counter, and encryption key, and total size from the
files hashtable in the fileTransfer.js, under the index of the sid.

The file transmitter then computes the bounds of the next chunk of the file (where a "chunk" is
64,511 bytes long, or shorter if there are not that many bytes left in the file), starting from the
current "position", sets the position (on the object in the files hashtable under the sid
index) to the index number of the next byte after the chunk, and increments the counter (on the
object in the files hashtable under the sid index).

The file transmitter then reads the chunk from disk, and when the chunk is loaded into memory,
it encrypts it with AES-256 in CTR mode using the encryption key and counter from the object
stored under the sid index in the files hashtable.

It then generates a header consisting of the counter value and the total number of chunks and
computes a MAC over that header plus the ciphertext chunk, using the MAC key from the
object stored under the sid index in the files hashtable.

It then appends the MAC tag to the ciphertext chunk and sends an IBB "data" message with
the data consisting of ciphertext chunk followed by the MAC tag. The IBB "data" message
includes, in addition to the data, a from and sid.

a. N.B. the file transmitter can choose anything it likes to send for the sid.

a. N.B. the server can choose anything that the file transmitter could choose (from 8.b.a
above). In addition, the server can send the "from" field set to whatever it likes. As
mentioned above, the server also knows the sids of all clients.

When/if the file transmitter receives an IBB "result" message in response to this send, then it
invokes its sendFileData method again.

(See Cryptocat.sendFileData from fileTransfer.js.)

9. Now the following event might eventually occur in the file receiver, as caused by the network send
from the file-transmitter's 7.b.:

a. Whenever an IBB 'data' message is received, the client uses the from and sid values from
the message to look up the object in the rcvFiles hashtable indexed under the from and
then the sid.

From that object it reads an abort flag, and if that flag is set it returns.

Next, from that object it reads the encryption and MAC keys, counter, and total number of
blocks. It generates a header containing the counter and total number of blocks, computes a
MAC on that header using the MAC key, parses out the MAC tag from the data from the
message, and compares its generated MAC tag to the one from the message. If they differ, it
sets the abort flag on the object indexed under from and sid in the rcvFile hashtable
and returns.

Next, it decrypts the chunk using the key and counter. It appends the plaintext chunk data to an
attribute named data of the object which is indexed under the from and sid in the
rcvFile hashtable, and increments the counter in that object.

(See the 'data' case in Cryptocat.ibbHandler in fileTransfer.js.)

Appendix B: Work Log
We checked the Chrome store archive against the git tag and discovered a discrepancy. We created
Issue 500 to highlight this issue.

• Part of this issue is that the Chrome store automatically transcodes images which changes the
archive contents and hash from what a developer submits. This inhibits an auditor from building a
Chrome package to compare against the Chrome store release. We attempted to notify the Chrome
store about this issue.

We examined changes in the otr.js dependency.

• Discovered extra_symkey which is used for file transfer.

We examined otr.js prepareMsg() function which is used for both chat messages and to initiate file
transfers.

• Things we didn't cover: SMP-based authentication, the user interface when it fails, the code
implementing same.

We examined file transfer thoroughly throughout the cryptocat.js, etc/fileTransfer.js, otr.js,
and lib/crypto-js/*.js.

• We mainly focused on the call stack in the crypto-js dependency, rather than analysing the entire
codebase, so we focused on the AES and CTR mode implementations.

• Note: We have a concern about a potential security failure if IV is the wrong type, size, or
element type/range when using counter mode in this dependency. We analyzed Cryptocat's
current call sites and believe it uses IV s of the correct type and size.

• We investigated a concerning counter rollover behavior in crypto-js and verified that Cryptocat
currently will never cause this rollover in file-transfer encryption. However, this is a danger for future
development.

• The restriction on file transfer MIME type is described in the UI but not documented or justified
in the Wiki Specification of File Transfer.

We investigated the entire source and use of etc/random.js:

• Examined how seeds are distributed to web workers: workers/keyGenerator.js and
workers/smp.js.

• We examined the API and call sites to gain assurance that there are not insufficient-entropy flaws
due to buffer encodings as have been discovered in the past. The new API makes the encoding
much more explicit using explicitly-named encodings. We believe the correct encoding is used at
each call site, so we have confidence this kind of flaw is not present in the current codebase.

We also briefly skimmed the complete source to lib/salsa20.js to identify any glaring problems, but
saw none. We did not thoroughly verify the implementation correctness, such as by comparing test
vectors against other implementations, nor did we analyze side-channel issues which may leak secret
state.

We examined portions of lib/strophe/ relevant to understanding interactions between XMPP, OTR,
and Cryptocat data structures and event interleaving.

We did minimal analysis on the potential for XSS and CSRF vulnerabilities:

• We believe BOSH is resistant to CSRF attacks provided the sid parameter is unguessable.
Viewing requests and responses in the browser's developer tools suggests this is true. We did not
analyze if participants in a group chat can learn sufficient details to create a CSRF attack vector
against other users. (Also, if this were a problem, it would be common to all BOSH implementations.
We have not yet investigated if this is a commonly known issue.)

• We performed only a few XSS tests, such as injections in the username or chat contents. The former
is inconclusive because we did not bypass client-based input-side restrictions that a malicious client
could bypass, and the latter was unsuccessful.

https://github.com/cryptocat/cryptocat/issues/500
https://github.com/cryptocat/cryptocat/wiki/OTR-Encrypted-File-Transfer-Specification

• Our investigation into these kinds of web-frontend attacks was not very thorough.

We did investigate lib/bigint.js:

• Found and filed a performance bug which we do not believe is security relevant, OTR Issue 41.

• Examined implementation of Maurer's algorithm before realizing it is unexercised in Cryptocat.

We investigated the potential for cross-site postMessage() abuse against the web workers; however,
they are anonymous web workers, and thus protected against this attack vector by JavaScript referential
semantics.

Investigated authentication, mainly in one-to-one OTR chat:

• Filed Issue 506 about a dubious time-based retry loop for sending public keys.

Experimented with nickname reuse between clients at different times in the same channel.

https://github.com/arlolra/otr/issues/41

Appendix C: Exploit Code for Issue G
The following code, triggered on connection to the server, was used to verify Issue G:

if (Cryptocat.myNickname == 'mallory') {
 try {
 var delay = 30;
 var newNickname = 'bob';

 console.log('Hacking commences in ' + delay + 's');

 // Cryptocat.xmpp.connection.muc on trunk
 var muc = Cryptocat.connection.muc;
 // Cryptocat.xmpp.conferenceServer on trunk
 var roomPrefix = Cryptocat.conversationName + '@' + Cryptocat.conferenceServer + '/';

 var fromJID = muc._connection.jid;
 var presence = new Strophe.Builder('presence', {to: roomPrefix + Cryptocat.myNickname,
 from: fromJID})
 .c('status', {code: '303'}).up()
 .c('item', {nick: newNickname}).tree();
 console.log(presence);
 window.setTimeout(function() {
 console.log('Sending the presence message:', presence);
 muc._connection.send(presence);
 console.log('Sent it');
 }, delay*1000);
 } catch(e) {
 console.log(e, e.stack);
 }
}

	Overview
	Audit Scope
	Coverage
	Target Code and Revision

	Findings
	Issue A. Disclosure of File Contents Due to Re-use Of Key and IV
	Issue B. Integrity Key and IV Reuse in File Transfer
	Mitigation for Issues A and B
	Remediation for Issues A and B
	Versioning
	Generate per-file keys
	New standard file transfer protocol

	Issue C. Substitution of File Contents By Hijacking Entry in User Interface
	Issue D. File Name, Mimetype, and Size Lack Confidentiality
	Issue E. You Log Out, Attacker Logs in with the same Nickname, Your Friend Thinks The Attacker is You
	Issue F. Nicknames Can Be Invisibly Reassigned
	Issue G. Capture of Sent Messages by Nickname Change
	Issues Without Known Exploits
	CTR-mode Overflow

	Future Work
	Protocol Analysis, Design, and Implementation
	Multiparty Chat
	File Transfer
	OTR & Cryptographic Libraries
	JavaScript Cryptography

	Open Questions & Concerns

	Recommendations
	Coding Practices

	Appendix A: The life cycle of the Cryptocat file transfer
	Appendix B: Work Log
	Appendix C: Exploit Code for Issue G

