

CRYPTON SECURITY AUDIT

FINAL REPORT
MARCH 24, 2014

Leviathan Security Group
3220 1st Ave. S., #100
Seattle, WA 98134

https://spideroak.com/

Internal Distribution Only 3/24/2014

 Page 2 of 17

Table of Contents
Crypton Design and Implementation Evaluation .. 3

Summary ... 3

Secure Remote Password (SRP) ... 3

Primary Security Issues .. 4

Crypton’s Unsolved Problem.. 4

Takeaways ... 4

Observations ... 5

Server-to-Client Attacks ... 5

Client-local attacks .. 8

Client-to-Server Attacks ... 11

Client-to-Client Attacks .. 12

SRP .. 12

Appendix A: Vulnerability Classification ... 16

Appendix B: Project Team.. 17

Internal Distribution Only 3/24/2014

 Page 3 of 17

Crypton Design and Implementation Evaluation
Updated 04/14/14: A previous version of this report contained a non-security finding. As the finding had

no bearing on the security of the system, it has since been removed.

Summary
Leviathan recently took a critical look at a technology currently in development by SpiderOak called

Crypton. Crypton, an open-source project hosted on github, aims to be a zero-knowledge,

cryptographically-secure storage framework upon which zero-knowledge cloud applications can be

written. Its primary functional goal is to provide assurance that data stored on the server can only be

read by the client who possesses the key and cannot be read by the server or anyone else.

For the version Leviathan reviewed, Crypton was still in development, and we would characterize its

readiness as “pre-alpha.” As we write this, major components are still being written while others are

being rewritten. With that in mind, we were tasked with reviewing two parts of the Crypton framework:

a feature called “Sharing” and Crypton’s implementation of the Secure Remote Password (SRP) protocol.

Since time allowed, we also reviewed the non-SRP login procedures.

Crypton consists of a server and a client, both of which are written in Javascript. The server code,

running on node-js, accepts requests from the client and stores or retrieves the appropriate information

from a database. The client does most of the heavy lifting; it encrypts, decrypts, signs, and verifies all the

user-supplied data. In its current form the client code is pushed to the browser from the server.

SpiderOak’s true implementation target is for the client code to be in a browser extension or mobile

app. An unusual part of Crypton’s threat model is that server itself is considered untrusted. That is to

say, in all scenarios we anticipated that the server could be acting against the clients. As such, the clients

should not trust anything the server gives them. This attribute of the system strongly shaped our

assessment.

Secure Remote Password (SRP)
SRP, defined by RFC 2945, is an authentication protocol whereby clients do not reveal their password to

the server. SRP is also resistant to replay and man-in-the-middle attacks. We encourage readers to

review the brief RFC to understand the workings of the protocol. Unfortunately, SRP is not designed to

resist modern password cracking attacks – the Verifier1, as defined by the RFC, is merely two rounds of

SHA1 plus a modular exponentiation; we would not describe this as robust against modern cracking

techniques and tools. As a result, when we consider the scenario for Crypton where the server is

malicious, the server itself could execute password cracking attacks against the verifier to gain

decryption keys to a user’s information. While Crypton’s implementation used SHA256 instead of SHA1,

1 The Verifier (v) is defined as:
x = SHA(<salt> | SHA(<username> | ":" | <raw password>))
v = g^x % N

https://crypton.io/
https://github.com/SpiderOak/crypton
https://github.com/SpiderOak/crypton/tree/e6393379ed0803c77331fa9444ca601350489a5c
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://tools.ietf.org/html/rfc2945
https://github.com/SpiderOak/crypton/blob/e6393379ed0803c77331fa9444ca601350489a5c/client/src/core.js#L115

Internal Distribution Only 3/24/2014

 Page 4 of 17

we recommended use of bcrypt as the hash function. Bcrypt is well-known for being computationally

intensive, which results in improved password cracking resistance.

Primary Security Issues
With an understanding of what Crypton intends to be and generally how it works, we examined it with a

critical eye and observed places where things could go wrong. Upon successful login, the server sends

the client its encrypted account information. The client then generates its master decryption key and

begins decrypting its account information. Examining this, we observed three key issues:

 First, the account’s public key is stored without verification that it corresponds to the decrypted

private key; this could allow the server to replace it which would result in the user encrypting

messages to themselves that they cannot actually decrypt.

 Second, we saw the same issue with the account’s public signing key; it is not being verified

against the decrypted private signing key.

 Third, the containerNameHmacKey is not verified before decryption which means that the

server could actually replace it with a different one that it knows by encrypting a new symmetric

key to the user’s public key.

Crypton’s Unsolved Problem
Every user-to-user encrypted messaging platform (including OTR, Cryptocat, and TextSecure) has

authentication limitations. Users are not fully sure that they are talking to the intended party. Crypton is

no different – since the server cannot be trusted, a given client cannot be sure the server is sending the

correct public key when they first interact with another user. Each of the aforementioned platforms

handle this problem in its own way, and we look forward to seeing what kind of innovative method

Crypton implements to handle this.

Takeaways
Crypton is an ambitious and novel platform. To our knowledge, no one else has set out to create a

similar framework for building future secure cloud applications. Based on the state of Crypton at the

time of Leviathan's review, the groundwork seemed to be nearly complete, and the development team

stated that it is working on significant improvements to the developer’s experience. In particular, the

team has already figured out how to index encrypted data to allow for searchable diary entries. They are

in the process of creating higher-level libraries to handle complex data structures and algorithms, all

implemented atop the encrypted block storage provided by Crypton.

Throughout the review we had an ongoing conversation with Crypton’s developers about the kinds of

real-world applications one might build using their technology. A particularly interesting example was

that of a zero-knowledge, encrypted cloud calendaring system (which we do not believe currently

exists). Crypton provides the framework for building such a system, and we are excited to see what

other previously-infeasible applications creative developers will build upon the features Crypton

provides.

https://en.wikipedia.org/wiki/Bcrypt
https://github.com/SpiderOak/crypton/blob/e6393379ed0803c77331fa9444ca601350489a5c/client/src/core.js#L208-L225
https://github.com/SpiderOak/crypton/blob/e6393379ed0803c77331fa9444ca601350489a5c/client/src/core.js#L208-L225
https://github.com/SpiderOak/crypton/blob/e6393379ed0803c77331fa9444ca601350489a5c/client/src/account.js#L68-L94
https://github.com/SpiderOak/crypton/blob/e6393379ed0803c77331fa9444ca601350489a5c/client/src/account.js#L68-L94
https://github.com/SpiderOak/crypton/issues/188
https://github.com/SpiderOak/crypton/issues/188
https://github.com/SpiderOak/crypton/issues/176
http://www.thoughtcrime.org/blog/the-cryptographic-doom-principle/

Internal Distribution Only 3/24/2014

 Page 5 of 17

Observations
Our observations are broken out below. They are based on different high-level attack perspectives and

intended targets and then separately for our investigation of Crypton’s SRP implementation.

Server-to-Client Attacks
A key component of the Zero-Knowledge threat model is the server as a malicious actor. To simulate

untrustworthy server behavior, we modified replies to the client in an attempt to cause the client to do

something unsafe. This included altering fields that were not digitally signed and replaying valid requests

from previous sessions. We also evaluated the client’s parsing of server response for HTML and

Javascript code injection vulnerabilities and other common client-side weaknesses. However, due to the

smart design of the Crypton client, including safe handling of all server-supplied data, such attacks do

not exist.

1 Record Replacement Attack

 Id 72635
 Type Implementation
 Risk Critical
 Impact/Skill Level Critical/Simple
 Reference n/a
 Location /client/src/container.js, Container.prototype.decryptRecord
 Observation Due to finding 72634, Alice does not verify her public signing key when she

receives it from the server. If the server uses this attack, the server can
tamper any record that Alice expects to be signed by herself. Further,
because the server has Alice's public encryption key, it can create messages
for her to decrypt.
If the server gives Alice a crafted public signing key upon login, she will use
that key to verify any records she expects to be from herself. As a result, the
server can tamper with the encrypted message (payloadCiphertext) of any
record when it's retrieved. The server could then use this to create new
records encrypted with Alice's public encryption key that she can then
decrypt. The result is full message replacement -- while the server cannot
read the old messages, it can create new messages in their place. Combined
with finding 72637, the server could completely control the application Alice
is trying to load, as it would be able to read container names Alice is
requesting and replace them with different containers that it has crafted.

 Recommendation Remediate finding 72634.

2 Man-in-the-Middle Attack

 Id 72628
 Type Design
 Risk Critical
 Impact/Skill Level Critical/Simple
 Reference n/a

Internal Distribution Only 3/24/2014

 Page 6 of 17

2 Man-in-the-Middle Attack

 Location /examples/chat3
 Observation [1/30/2014, Vulnerable -> Updated]: This attack builds on findings 72636 and

is not a full finding in itself.

A malicious server can lie about peer information in order to decrypt and
tamper all messages passed using chat3.
Server makes its own client, Mallory. When Alice makes a request for
/peer/Bob, instead of returning Bob's public keys it returns Mallory's public
keys and account id but Bob's username. All messages will now be sent to
Mallory instead of Bob. Mallory can now create a connection to Bob and
relay all of Alice's messages if desired.

 Recommendation This protocol is under similar limitations as OTR. As in-band identity
verification is impossible, users must do out-of-band fingerprint verification
to ensure they are talking to the person they expect and not Mallory.

3 Encrypted data can be modified or corrupted in transit

 Id 72637
 Type Design
 Risk High
 Impact/Skill Level High/Simple
 Reference http://cwe.mitre.org/data/definitions/649.html
 Location client/src/account.js, Account.prototype.unravel()
 Observation The value of 'containerNameHmacKeyCiphertext' is not signed. As a result, a

malicious server can craft a 'containerNameHmacKey' that the client will
blindly use.
The server crafts a containNameHmacKey that it knows. It then encrypts this
value with a new symmetric key that it crafts and then encrypts that
symmetric key using the public key of the user. The server then returns the
forged symKeyCiphertext and the forged containerNameHmacKeyCiphertext
to the user upon login. The server can now decrypt all Hmac-encrypted
containerName requests, allowing it to control what containers are returned
to the user.

 Recommendation Sign all ciphertext blobs and verify signatures before decryption.

4 Denial of Service
 Id 72634
 Type Implementation
 Risk Medium
 Impact/Skill Level Medium/Simple
 Reference http://cwe.mitre.org/data/definitions/730.html
 Location /client/src/account.js
 Observation The code in Account.prototype.unravel() does not verify that the ECC public

signing key sent by the server is the correct pair for the ECC private signing

http://cwe.mitre.org/data/definitions/649.html
http://cwe.mitre.org/data/definitions/730.html

Internal Distribution Only 3/24/2014

 Page 7 of 17

4 Denial of Service

key that it decrypts. A malicious server can trick a client into using an
incorrect public key, causing havoc with incorrectly-signed messages down
the road.

1. Client creates an account.
2. Client logs into diary and creates a diary entry.
3. Client logs out.
4. Client logs back into diary, server sends an incorrect but valid

signKeyPub point vector.
5. Client views diary but diary entry fails to decrypt. Error in Javascript

console: "uncaught exception: CORRUPT: signature didn't check
out".

 Recommendation In the unravel function derive the public key from the private key or at least

use the private key to verify that the public key is correct.

5 Denial of Service

 Id 72633
 Type Implementation
 Risk Medium
 Impact/Skill Level Medium/Simple
 Reference http://cwe.mitre.org/data/definitions/730.html
 Location /client/src/account.js
 Observation The code in Account.prototype.unravel() does not verify that the ECC public

key sent by the server is the correct pair for the ECC private key that it
decrypts. A malicious server can trick a client into using an incorrect public
key, causing havoc with incorrectly-signed messages down the road.

1. Client creates an account.
2. Client logs into diary and creates a diary entry.
3. Client logs out.
4. Client logs back into diary, server sends an incorrect but valid

pubKey point vector.
5. Client views diary but diary entry fails to decrypt. Error in Javascript

console: "Error: Cannot verify ciphertext".

 Recommendation In the unravel function derive the public key from the private key or at least
use the private key to verify that the public key is correct.

6 Denial of Service
 Id 72632
 Type Design
 Risk Low
 Impact/Skill Level Low/Simple
 Reference http://cwe.mitre.org/data/definitions/730.html
 Location /peer/user

http://cwe.mitre.org/data/definitions/730.html
http://cwe.mitre.org/data/definitions/730.html

Internal Distribution Only 3/24/2014

 Page 8 of 17

6 Denial of Service

 Observation The server can modify the response to a /peer/user request, and in doing so
prevent two users from ever communicating with each other.
Alice wants to chat with Bob so requests /peer/Bob.
The server modifies the response giving a different accountId, different
pubKey values, or both.
Alice receives this information and attempts to start a conversation with
Bob.
Message from Alice to Bob either go to the wrong accountId or are
encrypted to the wrong public key. As a result, Bob does not receive any
messages from Alice but Alice believes they are being received.
Further, if Bob tries to initiate communication with Alice, Alice does not see
the messages because they are not being sent to the container Alice expects.

 Recommendation The server is able to lie about the accountId and pubKey of a user when they
are requested by a client. Create a mechanism that makes server tampering
of this data obvious and report such tampering to the client.

7 Unhandled Exceptions

 Id 72629
 Type Implementation
 Risk Informational
 Impact/Skill Level Informational/Advanced
 Reference http://cwe.mitre.org/data/definitions/209.html
 Location client/src/account.js
 Observation In Account.prototype.unravel(), functions are not checked for exceptions

before being passed to other functions.
On line 71:
JSON.stringify() throws an exception when this.keypairCiphertext does not
contain valid JSON data
sjcl.decrypt() throws an exception when the result of JSON.stringify() is not a
valid key objection
JSON.parse() throws an exception when sjcl.decrypt() doesn't return JSON
data

Subsequent lines suffer from similar issues.

 Recommendation Handle the exceptions

Client-local attacks
Crypton’s Zero-Knowledge design lends itself well to privacy-focused application. As a result, we

consider the case of a shared computer being used to access a Crypton application. In this scenario, we

want to ensure that Crypton does not leave sensitive information on the shared computer that another

user might be able to find. We also want to ensure that a client can’t accidentally leak sensitive

http://cwe.mitre.org/data/definitions/209.html

Internal Distribution Only 3/24/2014

 Page 9 of 17

information over the wire. While a few caching-related findings were found, no serious vulnerabilities

impacting user privacy were found.

8 Cacheable HTTPS Response

 Id 72630
 Type Configuration
 Risk Low
 Impact/Skill Level Low/Simple
 Reference http://cwe.mitre.org/data/definitions/525.html
 Location Various
 Observation Unless directed otherwise, browsers may store a local cached copy of

content received from web servers. Some browsers cache content accessed
via HTTPS. If sensitive information in application responses is stored in the
local cache, then this may be retrieved by other users who have access to
the same computer at a future time.
Various paths return cacheable responses, some of which contain sensitive
data.

Example:
/inbox/## - This cached response contains the two participants of a given
message ID.
/peer/XXXX - This cached response contains the username and ID of an
intended communication participant, as well as the username of the local
user.

 Recommendation The application should return caching directives instructing browsers not to
store local copies of any sensitive data. Often, this can be achieved by
configuring the web server to prevent caching for relevant paths within the
web root. Alternatively, most web development platforms allow you to
control the server's caching directives from within individual scripts. Ideally,
the web server should return the following HTTP headers in all responses
containing sensitive content:
Cache-control: no-store
Pragma: no-cache

9 Password field with autocomplete enabled

 Id 72631
 Type Implementation
 Risk Low
 Impact/Skill Level Low/Simple
 Reference https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Pas

sword_and_Pwd_Reset_(OWASP-AT-006)
 Location /examples/chat3
 Observation Most browsers have a facility to remember user credentials that are entered

into HTML forms. This function can be configured by the user and also by
applications which employ user credentials. If the function is enabled, then
credentials entered by the user are stored on their local computer and

http://cwe.mitre.org/data/definitions/525.html
https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_and_Pwd_Reset_(OWASP-AT-006)
https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_and_Pwd_Reset_(OWASP-AT-006)

Internal Distribution Only 3/24/2014

 Page 10 of 17

9 Password field with autocomplete enabled

retrieved by the browser on future visits to the same application.

The stored credentials can be captured by an attacker who gains access to
the computer, either locally or through some remote compromise. Further,
methods have existed whereby a malicious web site can retrieve the stored
credentials for other applications by exploiting browser vulnerabilities or
through application-level cross-domain attacks.
Considering the user's passphrase is the only item required to decrypt a
user's account details, it should be protected wherever possible. Any forms
requesting this information should not allow the browser to save it plaintext.

 Recommendation To prevent browsers from storing credentials entered into HTML forms, you
should include the attribute autocomplete="off" within the FORM tag (to
protect all form fields) or within the relevant INPUT tags (to protect specific
individual fields).

10 Use of Insufficiently Random Values

 Id 72647
 Type Implementation
 Risk Low
 Impact/Skill Level High/Advanced
 Reference http://cwe.mitre.org/data/definitions/330.html
 Location /client/src/vendor/sjcl.js
 Observation The SJCL function addEntropy() is never called. Due to Javascript's poor track

record with random number generation, it might be the case that SJCL is not
producing sufficiently random numbers to provide strong security.

 Recommendation Gather entropy data from user input, then use SJCL's addEntropy function to
add this data to SJCL's entropy pool.

11 Path Traversal

 Id 72639
 Type Implementation
 Risk Informational
 Impact/Skill Level Informational/Simple
 Reference http://cwe.mitre.org/data/definitions/22.html
 Location account login & peer requests
 Observation The software uses external input to construct a pathname that should be

within a restricted directory, but it does not properly sanitize special
elements that can resolve to a location that is outside of that directory.
For account creation, usernames are permitted to contain '/', however when
login is attempted the / is interpreted within the URL causing the server to
reject the request. Thus, accounts can be created and a user can never log
into them. Further, if a username is prefixed with '../' the code will send
POST requests to other paths on the domain; so far the only effect is to login

http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/22.html

Internal Distribution Only 3/24/2014

 Page 11 of 17

11 Path Traversal

as '../peer' and have the peer error message display on the login screen.

For peer communication, '/' is considered valid by the form but the server
rejects the request. This can be used for path traversal, as a username that
starts with '../' will send GET requests to other paths on the domain.

 Recommendation Do not use user-supplied data when constructing file names or paths. Either
create unique filenames programmatically or create an enumeration of pre-
determined allowed filenames for use. As a last resort, encode or otherwise
sanitize user-supplied filenames to ensure that they do not include
characters which have special meaning in this context, such as '.', '\', and '/'.

Client-to-Server Attacks
As with all client-server applications, attacks against the server are a serious concern. We investigated

this attack surface by modifying valid client requests to the server and evaluated the results. As a result

of proper use of query parameterization, no SQL injection vulnerabilities were found. Other common

server-side attacks such as command injection were also not found, again due to proper handling of

data around sensitive functionality such as command execution.

12 Path information contained in JSON decoding error messages

 Id 72638
 Type Configuration
 Risk Low
 Impact/Skill Level Low/Simple
 Reference http://cwe.mitre.org/data/definitions/209.html
 Location JSON middleware
 Observation The software generates an error message that includes sensitive information

about its environment, users, or associated data. When an invalid JSON
string is sent to the server it fails to decode it and produces a stack trace that
includes server-side paths.
SyntaxError: Unexpected end of input
 at Object.parse (native)
 at
/home/ubuntu/crypton/server/node_modules/express/node_modules/conn
ect/lib/middleware/json.js:75:25
 at IncomingMessage.onEnd
(/home/ubuntu/crypton/server/node_modules/express/node_modules/con
nect/node_modules/raw-body/index.js:109:7)
 at IncomingMessage.g (events.js:175:14)
 at IncomingMessage.EventEmitter.emit (events.js:92:17)
 at _stream_readable.js:920:16
 at process._tickCallback (node.js:415:13)

 Recommendation Use a standard exception handling mechanism to be sure that your
application properly handles all types of processing errors. All error

http://cwe.mitre.org/data/definitions/209.html

Internal Distribution Only 3/24/2014

 Page 12 of 17

12 Path information contained in JSON decoding error messages

messages sent to the user should contain as little detail as necessary to
explain what happened.

Client-to-Client Attacks
As one of the test applications for this evaluation was a two-party chat program, we explored the

possibility of clients sending malicious payloads to each other. This included things like cross-site

scripting and other client-side code injection attacks. Our evaluation found no obvious mechanisms to

support malicious chat clients from attacking other chat clients. This is in largely due to proper input and

output handling of user-supplied data such as chat messages.

SRP
As part of this evaluation, we reviewed the Secure Remote Password (SRP) protocol. While Crypton’s

implementation follows the SRP specification as defined in RFC 2945, the specification was written in

2000 and has not been updated to reflect modern password cracking methodology. As a result, the

below findings are improvements that Crypton can make to the SRP protocol to harden the protocol

against today’s password cracking landscape.

13 Password Cracking
 Id 72645
 Type Design
 Risk High
 Impact/Skill Level Critical/Moderate
 Reference n/a
 Location n/a
 Observation SRP does not attempt to prevent dictionary attacks against V, the SRP

verifier. V is defined as:
x = HASH(salt || HASH(username || ":" || password))
v = g^x mod N
An attacker with access to the verifier, the salt, and the username is able to
make an off-line password guess with two SHA256 calculations followed by a
2048-bit modular exponentiation.
A malicious server could crack the passwords of its users and then decrypt all
the account information permitting it to read and modify all encrypted
records.

A dedicated attacker that knows only the username can precompute
z = HASH(username || ":" || guess)
for all password guesses. When the attacker eventually gains access to the
database, they now only need to compute HASH(salt || z) and then the
modular exponentiation to guess a password. This precomputation would
significantly reduce the time necessary to find the passwords for the chosen
set of targets.

Internal Distribution Only 3/24/2014

 Page 13 of 17

13 Password Cracking

 Recommendation Stored password-replacements should be protected by a hash function that
uses a work-factor such as bcrypt or scrypt. Consider replacing SHA256 with
one of these functions to greatly improve the security of password storage.
Consider including the salt to the inner-hash function to prevent the
aforementioned precomputation attack.

14 Improper Authentication

 Id 72640
 Type Implementation
 Risk Medium
 Impact/Skill Level Medium/Simple
 Reference http://cwe.mitre.org/data/definitions/287.html
 Location /client/src/core.js
 Observation From RFC 2945, page 5:

"If the server receives a correct response it issues its own proof to
the client. The client will compute the expected response using its
own K to verify the authenticity of the server. If the client
responded correctly the server MUST respond with its hash value."

Without this additional step, SRP only provides one-way authentication
instead of mutual authentication.
The server does not send its proof (M2) to the client, it merely responds with
"success=true" and then provides the account details. The client does not
check to ensure that the server computed the expected response. This may
allow for an adversary to trick the client, such as part of a man-in-the-middle
attack.

 Recommendation Have the server send "M2 = H(A | M | K)", and have the client verify it
matches before processing the account data from the server.

15 Clear Text Secrets

 Id 72641
 Type Design
 Risk Medium
 Impact/Skill Level Critical/Advanced
 Reference http://cwe.mitre.org/data/definitions/311.html
 Location /account
 Observation Upon registration, the client sends srpVerifier and srpSalt to the server. The

server blindly stores these values as long as the requested username doesn't
already exist.
An adversary who is able to passively sniff traffic between client and server
can record the srpVerifier value. With this value, the adversary can begin an
offline password cracking attack against the user's password per finding
72645. Further, an adversary with this value can impersonate the server in
future SRP interactions.

http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/311.html

Internal Distribution Only 3/24/2014

 Page 14 of 17

15 Clear Text Secrets

An adversary who is able to actively intercept traffic between client and
server can alter the srpVerifier value before it's recorded by the server. This
would allow that adversary to conduct a man-in-the-middle attack.

 Recommendation Ensure the channel between client and server cannot be sniffed, such as by
using certificate pinning. Another option is for the server to distribute its
public key with the client code distribution and have the client encrypt the
srpVerifier with the public key before sending it to the server.

16 Clear Text Secrets

 Id 72642
 Type Design
 Risk Low
 Impact/Skill Level High/Advanced
 Reference http://cwe.mitre.org/data/definitions/311.html
 Location /account/<user>/answer
 Observation Upon successful login, the server sends srpVerifier and srpSalt to the client.

The client doesn't seem to use these values.
An adversary able to passively sniff traffic between client and server can
record the srpVerifier value. With this value, the adversary can begin an
offline password cracking attack against the user's password per finding
72645. Further, an adversary with this value can impersonate the server in
future SRP interactions.

 Recommendation Do not send the srpVerifier in cleartext. As this value is not used by the
client, it should not be sent upon login.

18 Unhandled Exception

 Id 72644
 Type Implementation
 Risk Informational
 Impact/Skill Level Informational/Advanced
 Reference http://cwe.mitre.org/data/definitions/209.html
 Location /client/src/vendor/srp-client.js
 Observation From RFC 2945:

"The client MUST abort authentication if B % N is zero."
When the server sends a 512-byte string of 0's as the srpB value, the
calculateU function throws an exception. This exception is not caught,
resulting in a halt of the front-end service. No error is returned to the client.

 Recommendation Handle the exception and return a useful message back to the user.

19 Unhandled Exception

http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/209.html

Internal Distribution Only 3/24/2014

 Page 15 of 17

19 Unhandled Exception

 Id 72643
 Type Implementation
 Risk Informational
 Impact/Skill Level Informational/Advanced
 Reference http://cwe.mitre.org/data/definitions/209.html
 Location /server/node_modules/srp/lib/srp.js
 Observation From RFC 2945:

"The host MUST abort the authentication attempt if A % N is zero."
When the client sends a 512-byte string of 0's as the srpA value the
server_getS function throws an exception. This exception is not caught
resulting in a crash of the back-end service. Nginx then returns a 502 error to
the client.

 Recommendation Handle the exception and return a useful message back to the user.

http://cwe.mitre.org/data/definitions/209.html

Internal Distribution Only 3/24/2014

 Page 16 of 17

Appendix A: Vulnerability Classification
Impact The impact of the vulnerability if exploited. This section has five

possible values:

Info – The vulnerability affects a future use case of the

technology. There is no immediate threat but will be should the

system be configured in an anticipated manner.

Low - Provides an attacker with the ability to gain additional

information that could be used to further attack systems or

clients. No direct access to the data or resources.

Medium - Possible access to systems or servers. Possibility for

reputational damage or access to confidential data. No actual

access to data was obtained.

High - Direct access to systems or servers. A high likelihood of

reputational damage or a direct impact to the data.

Critical – A high impact vulnerability that could be exploited by a

worm.

Skill Level to Exploit The skill level required by an attacker to exploit the vulnerable

condition. This section has three possible values:

Simple - Basic understanding of the technology is all that is

required. Tools and attack methodologies are easily obtainable

from the Internet.

Moderate – Some moderate knowledge of the technology is

required. The attacker may need to entice the victim in order to

exploit the condition.

Advanced - The attacker has a near complete understanding of

the technology and is well able to write her own exploits.

Additional interaction with a victim may be required.

When graphically viewed in the following table the risk associated with a discovered vulnerablitiy can be

mitigated based on the potential of the vulnerability being exploited.

Weight Legend

Im
p

ac
t

R
a

ti
n

g

(W
ei

gh
t)

Critical (4) 4 8 12 Critical 10-12

High (3) 3 6 9 High 7-9

Medium (2) 2 4 6 Medium 4-6

Low (1) 1 2 3 Low 1-3

Advanced (1) Moderate (2) Simple (3)

Skill Level to Exploit Rating (Weight)

Internal Distribution Only 3/24/2014

 Page 17 of 17

Appendix B: Project Team
The project team consisted of the following individuals:

Contact Role Contact Information
Leviathan
Mark Stribling Project Manager Mark.stribling <at> leviathansecurity.com
Paul Brodeur Lead Security Consultant Paul.brodeur <at> leviathansecurity.com
SpiderOak
David Dahl Developer
Alan Fairless CTO
Ethan Rishon Oberman CEO
Cam Pedersen Software Engineer

	Crypton Design and Implementation Evaluation
	Summary
	Secure Remote Password (SRP)
	Primary Security Issues
	Crypton’s Unsolved Problem
	Takeaways

	Observations
	Server-to-Client Attacks
	Client-local attacks
	Client-to-Server Attacks
	Client-to-Client Attacks
	SRP

	Appendix A: Vulnerability Classification
	Appendix B: Project Team

